## Chapter 12: Physical properties of solutions.

1. Which of the following liquids will have the lowest freezing point?
a. Pure H 2 O
b. Aqueous ( C 6 H 12 O 6 ) glucose ( 1.6 m )
c. Aqueous $\mathrm{Kf}(0.50 \mathrm{~m})$
d. Aqueous $(\mathrm{C} 12 \mathrm{H} 22 \mathrm{O} 11)$ sucrose $(0.60 \mathrm{~m})$
e. Aqueous $\mathrm{FCl} 3(0.24 \mathrm{~m})$

Answer: b
2. When 2.36 g of a nonvolatile solute is dissolved in 100 g of solvent, the largest change in freezing point will be achieved when the solvet is $\qquad$ .
a. Tert-butanol, $\mathrm{Kf}=9.1$
b. Acetic acid, $\mathrm{Kf}=3.90$
c. Benzene, $\mathrm{Kf}=5.12$
d. All are expected to have the same freezing point.

Answer: 1
3. What is a freezing point of a solution that contains 10 g glucose $(\mathrm{C} 6 \mathrm{H} 12 \mathrm{O} 6)$ $180 \mathrm{~g} / \mathrm{mol}$ dissolved in 100 g of $\mathrm{H} 2 \mathrm{O}(18 \mathrm{~g} / \mathrm{mol})$ ? Kf of water is $1.86 \mathrm{C} / \mathrm{m}$
a. -0.186 C
b. 0.186 C
c. 1.03 C
d. -1.03 C
e. -0.10 C

Answer: d
4. Calculate the freezing point of a solution containing 20 g of KCl and 2200 g of water. KCl molar mass $=74.55 \mathrm{~g} / \mathrm{mol}$. Kf of water is $1.86 \mathrm{C} / \mathrm{m}$
a. 0.23
b. -0.23
c. -0.45
d. 1.23
e. 0.45

Answer: c
5. An aqueous solution has a normal boiling point of 102 C . what is the freezing point of this solution? Kb of water is 0.51 and Kf of it is 1.86
a. -3.6 C
b. -7.3 C
c. -0.55 C
d. -2.0 C

Answer: b
6. When 0.5 g of an unknown non-electrolyte compound is dissolved in 10 g of camphor ( $\mathrm{Kf}=40$ ), thr freezing point of the solution is 4.43 C lower than that of pure camphor. Calculate the unknown compound molar mass
a. $55.4 \mathrm{~g} / \mathrm{mol}$
b. $0.451 \mathrm{~g} / \mathrm{mol}$
c. $3450 \mathrm{~g} / \mathrm{mol}$
d. $451 \mathrm{~g} / \mathrm{mol}$

Answer: 4
7. Calculate the freezing point of a 0.035 m aqueous solution of NaNO . The molal freezing point depression constant water is $1.86 \mathrm{C} / \mathrm{m}$
a. 0.0326
b. 0.0175
c. -0.0651
d. -0.130

Answer: d
8. At a given temperature the vapor pressure of benzene and toulene are 183 mmHg and 59.2 mmHg respectively. Calculate the total vapor pressure over a solution of benzene and toulene with $X$ (benzene) $=0.560$.
a. 102 mmHg
b. 242 mmHg
c. 121 mmHg
d. 129 mmHg

Answer: d

## Chapter 14: Chemical equilibrium.

1. Which one of the following statments does not describe the equilibrium state?
a. The concentration of the reactants and products reach a constant level.
b. The concentration of thr reactants is equal to the concentration of products.
c. The rate of the forward reaction is equal to the rate of the reverse reaction.
d. Equilibrium is dynamic and there is no net conversion to reactants and products.

Answer: b
2. Shown below is a concentration vs time plot for the reaction $A=2 B$. For this reaction the value of the equilibrium constant is

a. $\mathrm{Kc}>1$
b. $K c<1$
c. $\mathrm{Kc}=0$
d. $K c=1$

Answer: b
3. $2 \mathrm{SO} 2(\mathrm{~g})+\mathrm{O} 2(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO} 3(\mathrm{~g}) \mathrm{Kc}=1.7 \times 10^{\wedge} 6$
$\mathrm{SO}(\mathrm{g}) \rightleftharpoons \mathrm{SO} 2(\mathrm{~g})+12 \mathrm{O} 2(\mathrm{~g}) \mathrm{Kc}=$ ??
The equilibrium constant is given for one of the reactions below. Determine the value of the missing equilibrium constant.
a. $7.7 \times 10^{\wedge}-4$
b. $3.4 \times 10^{\wedge} 2$
c. $1.2 \times 10^{\wedge}-6$
d. 8.5

Answer: a
4. The Keq for the equilibrium below is $7.52 \times 10^{\wedge}-2$ at 480 C .
$2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+2 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{HCl}(\mathrm{aq})+\mathrm{O}_{2}(\mathrm{~g})$
What is the value of Keq at this temprature for the following reaction?
$4 \mathrm{HCl}(\mathrm{aq})+\mathrm{O} 2(\mathrm{~g}) \rightarrow 2 \mathrm{H} 2 \mathrm{O}(\mathrm{l})+2 \mathrm{Cl} 2(\mathrm{~g})$
a. $1.88 \times 10^{\wedge}-2$
b. $3.7 \times 10^{\wedge}-2$
c. $7.52 \times 10^{\wedge}-2$
d. $2.74 \times 10^{\wedge}-1$
e. 3.65

Answer: e
5. For the reaction: $\mathrm{N} 2+2 \mathrm{O} 2 \rightleftharpoons 2 \mathrm{NO} 2 . \mathrm{Kc}=8.3 \times 10^{\wedge}-10$ at 25 C . what is the concentration of N 2 gas at equilibrium when the equilibrium concentration of NO 2 is twice the concentration of O 2 gas?
a. $2.4 \times 10^{\wedge} 9 \mathrm{M}$
b. $4.2 \times 10^{\wedge}-10 \mathrm{M}$
c. $2.1 \times 10^{\wedge}=10 \mathrm{M}$
d. $4.8 \times 10^{\wedge} 9 \mathrm{M}$

Answer: d
6. At elevated temperature, molecular hydrogen and molecular bromine react to partially from hydrogen and bromide:
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{HBr}(\mathrm{aq})$
A mixture of 0.682 mol of H 2 and 0.440 mol of Br 2 is combined in a reaction vessel with a volume of 2L. At equilibrium at 700K, There are 0.536 mol of H 2 present. At equilibrium, how many mol of Br 2 present in the reaction vessel?
a. 0.146
b. 0.536
c. 0
d. 0.294
e. 0.440

Answer: d
7. Carbon monoxide is converted into Carbon dioxide via the following reaction:
$\mathrm{H} 2 \mathrm{O}+\mathrm{CO} \rightarrow \mathrm{CO} 2+\mathrm{H} 2$. In an experiment, 0.35 mol of CO and 0.40 mol of H 2 O were placed in a 1 L reaction vessel. At equilibrium, there were 0.22 mol of CO remaining. Calculate Keq at the temperature of the experiment.
a. 3.5
b. 1
c. 0.28
d. 5.5
e. 0.75

Answer: c
8. $2 \operatorname{cof} 2(\mathrm{~g}) \rightleftharpoons \operatorname{co2}(\mathrm{g})+\operatorname{cf} 4(\mathrm{~g})$.The equilibrium constant Kc is equal to 2.00 at 1000 C for the reaction, If 0.43 moles of CO 2 and 0.43 moles CF4 are introduced into a 1.0 L flask. What will be the concentration of COF2 when equilibrium is reached?
a. 0.31 M
b. 0.15 M
c. 0.22 M
d. 0.11 M

Answer: c
9. For the reaction $2 \mathrm{NO} 2 \rightarrow 2 \mathrm{NO}(\mathrm{g})+\mathrm{O} 2(\mathrm{~g})$ initially 0.88 atm of NO 2 was reacted. At equilibrium, the total pressure of the reaction mixture is 0.998 atm . The pressure of NO 2 at equilibrium is:
a. 0.236 atm
b. 0.188 torr
c. 0.644 torr
d. 0.644 atm

Answer: d
10. At equilibrium, the pressure of the reaction $\mathrm{CaCO} 3 \rightarrow \mathrm{CaO}+\mathrm{CO} 2$ is 0.125 atm at 300 C . the Kc of the reaction is?
$R=8.314 \mathrm{~Pa} . \mathrm{m}^{\wedge} 3 / \mathrm{K} . \mathrm{mol} \quad \mathrm{R}=0.08206 \mathrm{~atm} . \mathrm{L} / \mathrm{K} . \mathrm{mol}$
a. 0.00508
b. 0.00266
c. 409
d. 6.392

Answer: a

## Chapter 15: Acidic and Bases.

1. What is the conjugate base of the Bronsted-Lowery acid $\mathrm{HPO}_{4}{ }^{-2}$ ?
a. $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
b. $\mathrm{PO}_{4}^{-3}$
c. $\mathrm{HPO}_{4}^{-2}$
d. $\mathrm{H}_{3} \mathrm{PO}_{4}$

Answer: b
2. Indicate all the Bronsted-Lowry acids in the following chemical reaction.

$$
\mathrm{HI}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}++\mathrm{I}^{-}
$$

a. HII
b. $\mathrm{HI}, \mathrm{H}_{2} \mathrm{O}$
c. $\mathrm{HI}, \mathrm{H}_{3} \mathrm{O}^{+}$
d. $\mathrm{HI}, \mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{3} \mathrm{O}^{+}$

Answer: c
3. Given the following substances in order of increasing acid strength.
$\mathrm{HOCl}<\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}<\mathrm{HC}_{2} \mathrm{O}_{4}<\mathrm{HOCN}^{-}<\mathrm{HNO}_{2}<\mathrm{HCL}$. which species listed below is the strongest base of that set?
a. $\mathrm{Cl}^{-}$
b. $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$
c. $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{-2}$
d. $\mathrm{NO}_{2}{ }^{-}$

Answer: b
4. An aqueous solution of $\qquad$ will produce a basic solution.
a. CsBr
b. $\mathrm{Mg}\left(\mathrm{ClO}_{4}\right)_{2}$
c. $\mathrm{NaNO}_{2}$
d. $\mathrm{NH}_{4} \mathrm{NO}_{3}$
e. $\mathrm{KNO}_{3}$

Answer: c
5. What is the hydronium ion $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$concentration of a 0.400 M acetic acid $\left(\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right)$, solution with $\mathrm{Ka}=1.8 \times 10^{-5}$ ?
a. $4.2 \times 10^{-2} \mathrm{M}$
b. $2.7 \times 10^{-2} \mathrm{M}$
c. $4.2 \times 10^{-3} \mathrm{M}$
d. $2.7 \times 10^{-3} \mathrm{M}$

Answer: d
6. The Ka of hydrazoic acid $\left.\left(\mathrm{HN}_{3}\right)^{-}\right)$is $1.9 \times 10^{-5}$ at 25.0 C . what is the pH of a 0.15 M aqueous solution of $\mathrm{HN}_{3}{ }^{-}$?
a. 1.95
b. 2.77
c. -3.46
d. 5.23

Answer: b
7. Determine pH of a weak base that has $\mathrm{Kb}=3.78 \times 10^{-18}$
a. 9.26
b. 7.00
c. 4.73
d. 3.42
e. 1.59

Answer: a
8. The acidic-dissociation constant of hydrocyanic acid (HCN) at 25 C is $4.9 \times 10^{-10}$. what is the pH of an aqueous solution of 0.060 M sodium cyanide ( NaCN )?
a. 11.04
b. $9 \times 10^{-12}$
c. 2.96
d. $1.1 \times 10^{-3}$

Answer: a
9. Determine the pH of a 0.15 M aqueous solution of $\mathrm{CaF}_{2}$ for hydroflnoric acid (HF), $\mathrm{Ka}=7 \times 10^{-4}$
a. 1.32
b. 5.68
c. 8.32
d. 0.52
e. 5.01

Answer: c
10. Aniline $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}, \mathrm{~Kb}=4.3 \times 10^{-10}\right.$ at 25 C$)$ is an industrially important amine used in the making of dyes. Determine the pH of an aniline solution made by dissolving 5.9 g of aniline in enough water to make 100 ml of solution. Molar Mass: $\mathrm{H}=1, \mathrm{C}=12, \mathrm{~N}=14$
a. 10.56
b. 4.78
c. 9.56
d. 9.22

Answer: d
11. Calculate the pH of a 1.60 M KBrO solution. Ka for hypobramous acid, HBrO is $2.0 \times 10^{-9}$ and $\mathrm{Kw}=1.0 \times 10^{-14}$
a. 11.45
b. 2.55
c. 9.75
d. 4.25

Answer: a
12. What is the pH of a solution prepared by mixing 10 ml of $0.020 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$ with 50 ml of 0.40 M NaOH ? Assume that the volume are additive
a. 13.20
b. 13.17
c. 13.28
d. 13.68

Answer: a
13. In which of the following aqueous solutions does the weak acid exhibit the highest percentage ionization?
a. $0.01 \mathrm{M} \mathrm{H}_{2} \mathrm{CO}_{3}\left(\mathrm{Ka}=4.5 \times 10^{-7}\right)$
b. $0.01 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{3}\left(\mathrm{Ka}=1.4 \times 10^{-2}\right)$
c. $0.01 \mathrm{M} \mathrm{HCN}\left(\mathrm{Ka}=6.2 \times 10^{-10}\right)$
d. $0.01 \mathrm{M} \mathrm{HOCL}\left(\mathrm{Ka}=3.5 \times 10^{-8}\right)$
e. $0.01 \mathrm{M} \mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}\left(\mathrm{Ka}=1.3 \times 10^{-5}\right)$

Answer: b
14. What is the percent dissociation of a benzoic acid solution with $\mathrm{pH}=2.0$ ? The acid dissociation constant for the monoprotic acid is $6.5 \times 10^{-5}$
a. $3.5 \%$
b. $1.5 \%$
c. $2.5 \%$
d. $0.65 \%$

Answer: d
15. The pH of a 0.5 M solution of a NaBr is:
a. 5.0
b. 13.6
c. 9.2
d. 7.0

Answer: d
16. The pH of a $2.0 \times 10-8 \mathrm{M} \mathrm{NaOH}$ solution is:
a. 11.7
b. 7.7
c. 8.7
d. 7.1

Answer: d

