

Chapter 6: Nucleophilic Substitution and Elimination Reactions

© R. Spinney 2013

Nucleophilic Substitution

A *nucleophilic substitution* reaction involves the replacement of a *leaving group* with a *nucleophile*, i.e.

Note: this reaction is an equilibrium since the leaving group can, in principle, act as a nucleophile.

Nucleophiles (Nu) are electron rich (i.e. have lone pair(s) of electrons) and are attracted to the positive nuclear charge of an e⁻ poor species, the **electrophile** (E).

Nucleophilicity refers to the ability of the nucleophile to react this way, i.e. how available are the e^- in the nucleophile. The more available the e^- the more reactive the Nu. These may be lone pair e^- but π bonding e^- are also "available".

Common nucleophiles include:

Nucleophile	Neutral	Anionic
Halide		I ⁻ , Br ⁻ , Cl ⁻
Oxygen	H ₂ O, ROH	OH ⁻ , RO ⁻ , RCO ₂ ⁻
Nitrogen	NH ₃ , RNH ₂ , R ₂ NH, R ₃ N	N ₃ ⁻
Sulfur	RSH, R ₂ S	SH⁻, RS⁻
carbon		N≡C⁻, R-C≡C⁻

Nucleophilicity trends (compared with basicity):

- Across a row in the periodic table nucleophilicity (lone pair donation) C⁻
 N⁻ > O⁻ > F⁻ since increasing electronegativity decreases the lone pair availability. This is the same order as for basicity.
- 2) For the same central atom, higher electron density will increase the nucleophilicity, *i.e.* an anion will be a better Nu (lone pair donor) than a neutral atom (*i.e.* $HO^2 > H_2O$). This is the **same order** as for basicity.
- 3) Within a group in the periodic table, increasing **polarization** of the nucleophile as you go down a group enhances the ability to form the new C-X bond and increases the nucleophilicity, so I⁻ > Br⁻ > Cl⁻ > F⁻. The electron density of larger atoms is more readily distorted *i.e.* polarized, since the electrons are further from the nucleus. Note: this is the **opposite order** to basicity (acidity increases down a group) where polarizability is much less important for bond formation to

the very small proton.

The following tables ranks the strength of common nucleophiles (as compared in methanol CH_3OH):

Strength	Nucleophile
Very Good	I ⁻ , HS ⁻ , RS ⁻
Good	Br⁻, OH⁻, RO⁻, N≡C⁻, N ₃ ⁻
Fair (moderate)	NH_3 , Cl^- , RCO_2^-
Weak	H ₂ O, ROH
Very weak	RCO ₂ H

Leaving Groups

- A *leaving group*, LG, is an atom (or a group of atoms) that is displaced as a stable species taking with it the bonding electrons. Typically the LG is an anion (*i.e.* Cl⁻) or a neutral molecule (*i.e.* H₂O). The better the LG, the more likely it is to depart.
- A "good" LG can be recognized as being the <u>conjugate base of a</u> <u>strong acid</u>.
- What do we mean by this? First we should write the chemical equations for the two processes:

Leaving Groups

Note the similarity of the two equations: both show heterolytic cleavage of a σ bond to create an anion and a cation.

- For acidity, the more stable A⁻ is, then the more the equilibrium will favor dissociation, and release of protons meaning that HA is more acidic.
- For the leaving group, the more stable LG⁻ is, the more it favors "leaving".
- Hence factors that stabilize A⁻ also apply to the stabilization of a LG⁻.

Leaving Groups

The following tables lists some of the common leaving groups.

Strength	Leaving Group
Excellent	NH ₃
Very Good	Ι ⁻ , Η ₂ Ο
Good	Br⁻
Fair	Cl-
Poor	F ⁻
Very poor	OH^{-} , RO^{-} , NH_{2}^{-}

Mechanism of Substitution Reactions

Experimentally if you measure the rate of substitution for the following reactions you will find the following rate laws:

$$OH \cdot H_3C - Br \longrightarrow H_3C - OH Br \cdot rate = k[CH_3Br][OH \cdot]$$

$$OH \cdot (CH_3)_3C - Br \longrightarrow (CH_3)_3C - OH Br \cdot rate = k[(CH_3)_3CBr]$$

$$Why the difference?$$

Substitution Reactions: $S_N 2$

The first reaction is dependent on the concentrations of both the substrate and nucleophile, i.e.

 $OH \cdot H_3 C - Br + H_3 C - OH - Br \cdot rate = k[CH_3 Br][OH \cdot]$

This implies it is a bimolecular reaction that occurs in one step. There is a single TS in which the new bond to the Nu is forming while the old bond to the LG is breaking, i.e.

OH-
$$H_3C-Br$$
 \longrightarrow $HO^{\delta-}$ $HO^{\delta-}$ $Br^{\delta-}$ \longrightarrow H_3C-OH Br^{-}
 HH

Substitution Reactions: $S_N 2$

Energy

The reaction coordinate diagram right indicate this one step mechanism.

- Rate = [substrate] & [nu]
- S_N2 results in an inversion of configuration if it occurs at a chiral center. (Back-side attack of the Nu)
- Fastest for 1°, slowest for 3°

Reaction coordinate

Substitution Reactions: S_N1

The second reaction is dependent only on the concentration of the substrate, i.e.

This implies it is a unimolecular reaction that occurs in several steps. The reaction involves the loss of the LG to generate an intermediate carbocation, i.e.

$S_N 1$ Mechanism

- S_N1 is illustrated by the solvolysis of *tert*-butyl bromide.
 - Step 1: Break a bond to form a stable ion or molecule. Ionization of the C-X bond gives a carbocation.

Copyright © John Wiley & Sons, Inc. All rights reserved.

Step 2: Reaction of a nucleophile and an electrophile to form a new covalent bond.

Copyright © John Wiley & Sons, Inc. All rights reserved.

Step 3: Take a proton away. Proton transfer to methanol completes the reaction.

Copyright © John Wiley & Sons, Inc. All rights reserved.

Substitution Reactions: S_N1

The reaction coordinate diagram right indicate this multi-step mechanism.

- Rate = [substrate]
- Generate intermediate carbocation
- S_N1 results in racemization of configuration if it occurs at a chiral center.
- Fastest for 3°, slowest for 1° (parallels C⁺ stability)

Reaction coordinate

S_N2: Stereochemistry

Inversion of configuration for chiral atoms, i.e.

S-2-bromobutane

R-butan-2-ol

S_N1: Stereochemistry

Racemization of chiral atoms, i.e.

$S_N 1 vs. S_N 2$: Nature of Substrate

The substrate itself has an effect on the mechanism. $S_N 1$ requires an intermediate carbocation, while $S_N 2$ requires a backside attack of the nucleophile (steric effects), i.e.

$S_N 1 vs. S_N 2$: Nature of Substrate

Reactivity of Alkyl bromide to S_N1 mechanism:

43 100,000,000 Reactivity of Alkyl bromide to $S_N 2$ mechanism:

1350

too small to measure

$S_N 1 vs. S_N 2$: Solvent Effects

The solvent can effect the rate of formation and stability of charged species. In general two types of solvents are used:

- Polar protic solvents: a solvent that contains an -OH group, they are good for dissolving anions and cations. This increases the rate of S_N1 but decreases S_N2 by solvating the Nu. (water, alcohols, acids)
- Polar aprotic solvents: only solvate cations well therefore good for SN2 as the Nu is very reactive in these conditions. (acetone, DMSO, DMF, acetonitrile)

$S_N 1 vs. S_N 2$: Solvent Effects

Effects of polar protic/aprotic solvent polarity on $S_N 2$ mechanism

Protic /aprotic Solvent		Relative Rate
CH ₃ OH		1
H ₂ O		7
(CH ₃) ₂ SO	(DMSO)	1,300
(CH ₃) ₂ NCHO	(DMF)	2,800
CH ₃ C≡N		5,000
		N - C

 $N \equiv C - C H_{3}$

dim ethyl sulfoxide

dim ethylform am ide

acetonitrile

$S_N 1 vs. S_N 2$: Nucleophile

- Anions are stronger nucleophiles than neutral molecules, i.e. HO⁻ vs. H₂O (but more basic).
- 2) Nucleophilic strength increases down a column in the Periodic Table (polarizability).
- Across a row in the periodic table nucleophilicity (lone pair donation) C⁻ > N⁻ > O⁻ > F⁻ since increasing electronegativity decreases the lone pair availability.

S_N1 vs. S_N2: Summary

Summary of $S_N 1 \& S_N 2$ reactions:

Variable	S _N 1	S _N 2
Halide: 1°	NO	YES
2°	Yes	Yes
3°	YES	NO
Stereochemistry	Racemization	Inversion
nucleophile	Neutral ok as rate doesn't depend on [Nu]	Best when anionic
Solvent	Polar protic	Polar aprotic best, Polar protic slow

$S_N 1 vs. S_N 2: Summary$

Summary of $S_N 1 \& S_N 2$ reactions:

- -1° react S_N2! Can't make stable carbocation
- 3 $^{\circ}$ react $S_{\rm N}1!$ Too sterically crowded for $S_{\rm N}2$
- 2° reacts either S_N1 or S_N2, this is the one you have to use nucleophilic strength and solvent conditions to control the mechanism if needed.

Nu			R—Nu	
Formula	Name	Formula	Name	Comments
Oxygen nucle	ophiles			
1. но:-	hydroxide	R-ÖH	alcohol	
2. RO:-	alkoxide	R-ÖR	ether	
3. нён	water	R-Ö	alkyloxonium ion	These ions lose a proton and the (alcohol)
4. RÖH	alcohol	R-Ö	dialkyloxonium ion	f products are alcohols and → ROR ethers. (ether)
5. R-C	carboxylate	0 R—0C—R 	ester	
Nitrogen nucl	leophiles			
6. NH3	ammonia	R—NH3	alkylammonium ion	With a base, -H* RNH2
7. RNH ₂	primary amine	$R - \stackrel{+}{N}H_2R$	dialkylammonium ion	readily lose -H* R,NH
8. R ₂ NH	secondary amine	R-NHR2	trialkylammonium ion	to give -H* R ₃ N :
9. R,Ň	tertiary amine	R—NR3	tetraalkylammonium ion	 animes.
Sulfur nucleo	philes			
10. нร:-	hydrosulfide	R—SH	thiol	
11. RS:-	mercaptide	R—SR	thioether (sulfide)	
12. R ₂ S;	thioether	R	trialkylsulfonium ion	
Halogen nucl	leophiles			
13. :::-	iodide	R—Ï:	alkyl iodide	The usual solvent is acetone. Sodium iodide is soluble in acetone, but sodium bromide and sodium chloride are not.
Carbon nucle	ophiles		alled exempts (altrib)	Percelines the levels it.
14. ∶C≡N	; cyanide	K−C=N:	aikyi cyanide (nitrile)	R—N≡C:, is formed.
15.⁻;C≡C	R acetylide	R-C=CR	alkyne	

Elimination Reactions

A problem arises in nucleophilic substitution reactions in that nucleophiles are also bases. This is especially true for anionic nucleophiles, i.e.

$$Nu:^{-} + H^{+} \rightarrow Nu:H(Nu-H)$$

This can occur by the Nu abstracting a proton (i.e. acting as a base) from the substrate giving an elimination reaction.

Dehydrohalogenation Reactions

A dehydrohalogenation is an elimination reaction of alkyl halides. It will compete with a substitution to some degree, i.e.

It is used to produce alkenes from alkyl halides

E Mechanisms

Like substitution there are several possible mechanisms for elimination reactions. We will examine two of them: E1 and E2

E2 Mechanism

- Rate = k[alkyl halide][base] (bimolecular)
- Stereochemical requirement: anti-periplanar arrangement of the H atom and LG is required
 - This results from an orbital interaction that allows the π bond to form.

E2 Mechanism

Regioselectivity: where does the double bond form: *Zaitsev's rule*: most highly substituted alkene (watch for sterically hindered bases) Stereoisomers: trans > cis

E1 Mechanism

• Rate = k[alkyl halide] (unimolecular)

E1 Mechanism

Base strength and competing mechanisms:

- 3° alkyl halides: only $S_N 1$ but either (E1 or E2)
 - Weak Nu and polar solvent: $S_N 1$ and E1 compete

- 2° alkyl halides: $S_N 1$, $S_N 2$, E1 or E2 are all possible.
 - Weak Nu
 substitution
 - − Strong base → elimination
 - Can use solvent to control $S_N 1$ vs. $S_N 2$

2° alkyl halides: i.e.

1° alkyl halides:

- Only S_N2 and E2 are possible (no carbocations)
- Substitution dominates unless you use a sterically hindered base like (CH₃)₃CO⁻K⁺

Summary of S_N versus E for Haloalkanes

– For Methyl and Primary Haloalkanes

TABLE 7.7 Summary of Substitution versus Elimination Reactions of Haloalkanes			
Halide	Reaction	Comments	
Methyl	S _N 2	The only substitution reactions observed.	
CH₃X	_S _N T	S _N 1 reactions of methyl halides are never observed. The methyl cation is so unstable that it is never formed in solution.	
Primary RCH₂X	S _N 2	The main reaction with strong bases such as OH ⁻ and EtO ⁻ . Also, the main reaction with good nucleophiles/weak bases, such as I ⁻ and CH ₃ COO ⁻ .	
	E2	The main reaction with strong, bulky bases, such as potassium <i>tert</i> - butoxide.	
	_S _{N1/E1}	Primary cations are never formed in solution; therefore, S _N 1 and E1 reactions of primary halides are never observed.	

Copyright © John Wiley & Sons, Inc. All rights reserved.

Summary of S_N versus E for Haloalkanes

– For Secondary and Tertiary Haloalkanes

TABLE 7.7 Summary of Substitution versus Elimination Reactions of Haloalkanes			
Halide	Reaction	Comments	
Secondary R ₂ CHX	S _N 2	The main reaction with weak bases/good nucleophiles, such as I ⁻ and CH ₃ COO ⁻ .	
	E2	The main reaction with strong bases/good nucleophiles, such as OH ⁻ and CH ₃ CH ₂ O ⁻ .	
	S _N 1/E1	Common in reactions with weak nucleophiles in polar protic solvents, such as water, methanol, and ethanol.	
Tertiary R ₃ CX	_S _N 2	S _N 2 reactions of tertiary halides are never observed because of the extreme crowding around the 3° carbon.	
	E2	Main reaction with strong bases, such as HO ⁻ and RO ⁻ .	
	S _N 1/E1	Main reactions with poor nucleophiles/weak bases.	

Copyright © John Wiley & Sons, Inc. All rights reserved.

Summary of S_N versus E for Haloalkanes

–Examples: Predict the major product and the mechanism for each reaction.

Copyright © John Wiley & Sons, Inc. All rights reserved.