Respiration By d Gehan el wakeel

Respiratory function of the blood

O2 transport by blood

- Once oxygen has diffused from the alveoli into the pulmonary blood it is transported to the peripheral tissues.
- Each 100 ml arterial blood contains <u>19.5</u> ml O2 when PO2 = 100 mm Hg, present in <u>two forms</u>:

1- Physical solution	2- Chemical combination
- it's the volume dissolved physically in plasma.	- it's the part of O2 carried by haemoglobin (HB).
- In <u>arterial blood</u> it equals <u>0.3 ml</u> /100 ml blood. i.e <u>2%</u> of O2.	- it equals <u>19.2 ml /100 ml</u> <u>blood</u> i.e <u>98 %</u> of O2.
 <u>Significance</u>: <u>It reflects O2 tension (PO2) in the bloo</u>it equals <u>0.3</u> ml / 100 ml when O2 tension equals <u>100 mm</u> Hg (arterial blood). while it equals <u>0.13 ml / 100 ml when O2 tension equals <u>40 mm Hg (venous blood).</u></u> 	
 <u>2) It acts as a pathway</u> for the supply of O2 to HB at lung and from HB to tissues at tissues. <u>-When blood reaches tissues</u>, it is this small amount that is first transported to the cells and then it is replaced rapidly by more O2 from HB. 	

Haemoglobin (HB)

- is O2 carrying pigment present in the blood. <u>Structure of HB</u>: it's formed of:
- 1- Globin: a protein composed of 4 polypeptide chains:

α, β, γ & δ.

> according to the type of polypeptide chains, HB may be classified into:

HB A(adult)	- 2 α (141 aa) + 2 β (146 aa) chains represents 98 % of normal adult HB.
ii) HB A2	-2 α & 2 δ chains, represents 2% of adult HB
ii) HB F(fetal)	-2 α & 2 γ. - present in fetal life and totally replaced by adult
	haemoglobin <u>6 months after birth.</u>

Haemoglobin (HB)

2- 4 heme groups:

- each <u>heme group</u> contains <u>a single ferrous iron, Fe</u>⁺⁺
 in its centre.
- each Fe⁺⁺ can combine with one molecules of O2 so
 that each HB molecule can combine with 4
 molecules of O2, this binding is <u>Characterized by</u>:
- i) the reaction is <u>rapid and reversible & no enzymes.</u>
- ii) the reaction is <u>oxygenation not oxidation</u> as iron remains in the ferrous state.

HB

Oxygen dissociation curve = O₂ - HB dissociation curve

def: it is a curve showing the relation between O2 pressure (or tension = P O2) and % saturation of HB with O2.

Significance:

- <u>from the curve we can study the factors that affect %</u>
 <u>saturation of HB with O2 in relation to O2 tension of the</u>
 blood.
- it is an important tool for understanding <u>how our blood</u>
 <u>carries and releases oxygen.</u>

- blood samples are placed in special vessels known as
 tonometers (special containers).
- each tonometer is exposed to certain O2 tension (PO2) at 37 C. - O2 content(Is the vol. of O2 chemically combined to HB in 100 ml blood.) is determined & by the O2 capacity(is the vol. of O2 <u>chemically</u> divided **<u>combined</u>** with HB in 100 ml blood when HB is **<u>fully</u>** saturated with O2). to get % saturation , which then is put against O2 tension to get the curve.

How to obtain the curve

% saturation (= $O2 \text{ content} \times 100$)

O2 capacity

is used so that the curve is <u>universal</u>. if O2 content

is used, the curve will not be universal because <u>O2</u>

<u>content</u> <u>differs</u> from a person to another.

Shape of the curve

The curve has a characteristic <u>sigmoid</u> shape (<u>not linear</u>)
 because the combination O2 with the HB molecules
 occurs in steps, where <u>each combination facilitates the</u>
 <u>next</u> i.e affinity of heme gp. To oxygen is increased
 gradually after first oxygenation.

Physiological significance of the curve

- The curve has the following characteristics:
 - 1) Upper flat part (plateau).
 - 2) Middle curved part (slope).
 - 3) Lower vertical (steep).

1) Upper flat part (plateau)

• From the curve we note that:

- a- The arterial O_2 % saturation <u>doesn't change significantly until PO₂</u> <u>has decreased to 60 mm Hg:</u>
- at O₂ pressure 100 mm Hg \rightarrow saturation % not 100 % (in the body it's only 97.5 % due to the physiological shunt(% saturation at the venous end of the pulmonary capillary blood =100% however in the arterial blood it drops to 97.5 %)

Cause:

- due to addition of venous blood from the bronchial and coronary veins.
- ➤ shunt).
- > at O_2 pressure 60 mm Hg \rightarrow % sat. = 90 %

So marked $\downarrow O_2$ pressure from 100 mmHg to 60 \rightarrow only little \downarrow in % sat.: about 7.5 % (in the body).

b- this indicates that alveolar or arterial PO₂ can be lowered

by about 1/3 without much \downarrow **in % saturation** i.e blood gets a good saturation with O₂ even if alveolar PO₂ fall to 60 mm Hg.

Significance:

• This enables persons living in <u>high altitude</u>, and those complaining of <u>lung disease</u> to get enough O_2 in spite of $\downarrow PO_2$ in atmosphere or in the alveolar air. 2) Middle curved (slope part):

<u>At PO₂ 40 mm Hg (that of the venous blood</u>
 <u>during</u> rest), the % saturation is 70 % i.e during rest 30
 % of O₂ are given to the tissues .

Significance:

his satisfies their needs, the remaining <u>70 %</u> act as <u>venous O₂</u>
 <u>reserve</u> in blood for <u>emergency conditions</u> e.g muscular exercise.

3) Lower vertical (steep) part of the curve, we note that:

Little ↓of PO₂ below 40 mmHg → <u>marked</u> ↓% sat. i.e
 more O₂ is unloaded from HB so supplies more
 O₂ to tissues.

Significance:

• This enables peripheral tissues to <u>withdraw large amount</u> of O₂ for only a small drop in capillary PO2 <u>as occurring in</u> <u>ms. excercise.</u> Percentage (%) unloading

-Percentage (%) unloading = % sat. in arterial blood - % sat. in venous blood.

-equals 30 % during rest <u>but ↑ in ms. exercise</u> & may be <u>70</u>
<u>% or</u> <u>even more.</u>

Venous O2 reserve

- -<u>def</u>: it's the volume of O_2 that <u>remains in venous blood</u> after supplying tissues.
- this amount equals 14 ml O₂ i.e 70 % saturation during rest.
- this value \downarrow markedly during exercise.

Factors affecting O₂ dissociation curve

- a number of factors can influence the affinity of HB to O₂
 & can shift the curve either to the Rt. or to the left.
- A. Shift to the Right : means <u>more</u> O2 release from HB to tissues.
- B. Shift to the left : means <u>less</u> O2 release from HB to tissues.

A- Factors that shift the curve to the right

<u>1- ↑ H+ Concentration</u>

- under <u>acidic conditions</u>, <u>the amount of O₂ bound to HB</u>
 <u>at any given PO₂ is diminished</u>, so the higher the H⁺
 conc. → the less O₂ is bound to HB at any given PO₂.
 this is because when H⁺ ions bind with HB molecules
 - it changes their molecular structure $\rightarrow \downarrow$ affinity to $O_2 \rightarrow \uparrow O_2$ release.

$H^{\scriptscriptstyle +} \ + \ HBO2 \ \rightarrow \ H.HB \ + \ O2$

<u>2</u>)↑ **PCO**₂

- > has the same effects as H⁺ conc., so the high the PCO₂ → the less O₂ bound to HB i.e more O₂ released to tissues.
- this effect because PCO₂ can influence Ph in the <u>following</u> <u>manner:</u>

 $\mathrm{CO}_2 + \mathrm{H}_2\mathrm{O} \rightarrow \mathrm{H}_2\mathrm{CO}_3 \rightarrow \mathrm{H}^+ + \mathrm{HCO}_3^-$

3) ↑ temperature

 the higher the temperature → the less O₂ bound to HB. HBO₂ <u>↑ temerature</u> HB + O₂
 <u>N.B</u>: exercised ms. are acidic , hot and contain high PCO₂ → less O₂ bound to HB i.e more O₂ released to tissues.

4) ↑ 2,3 DPG (di-phospho-glycerate)

 2,3 DPG is a substance formed inside RBCS to ↑ release the oxygen from HB.

a-Formation:

by side reaction in the glycolytic process (N.B: RBCs depend on anaerobic glycolysis because they have no mitochondria).

Glucose \rightarrow 1.3 DPG \rightarrow pyruvic acid \rightarrow lactic acid \downarrow 1,3 DPG mutase 2.3 DPG + HBO₂ \rightarrow 2.3 DPG.HB + O₂ Erythrocyte the activity of 1,3 DPG mutase is stimulated by hypoxia and inhibited by oxy HB.

Functions of 2.3 DPG:

- it combines with β chain of HB \rightarrow release of O_2 to the tissues.

Factors that \uparrow **concentration of 2,3 DPG in RBCs include:**

- i- all conditions of hypoxia as: anaemia. high altitude.
- ii- muscular exercise.
- iii- some hormones as testosterone, growth hor., thyroxine & catecholamines.
- iv-during pregnancy.

Function of 2,3 DPG is \delta ed in:

i) Fetal HB:

- fetal HB can't bind to 2,3 DPG as it doesn't contain β
 chain so its affinity to O2 is higher than adult HB.

ii) Stored blood: as the preservative used destroy 2,3 DPG.

B- Factors that shift the curve to the left

<u>1) ↓ H⁺ conc.</u>

<u>2) ↓ Pco₂ .</u>

3) \Temp. : so in cold weather although cheeks & ears

are red little O₂ is released to the tissues .

4) ↓ **2.3 DPG:**

this occurs in stored blood because of the preservative used

accordingly the HB affinity to O_2 is increased & less O_2 delivered to the tissues.

5) Carbon monoxide poisoning:

- causes maximum shift to left as the affinity of HB for CO is 210 times that for O2.

-CO prevents release of the remaining oxygen from HB.

CO₂ transport by blood

- When oxygen is used by the cells, all of it is converted into CO2 which diffuses from the cells to the blood.
- each 100 ml arterial blood that enters the tissues already carries <u>50</u> ml Co₂, this large amount is carried in <u>two</u> forms:

1-Physically dissolved = 5%:		
- dissolved in plasma & RBCS.		
- responsible for PCO (CO2 tension).		
2-Chemically combined = 95 %:		
a) Carbamino compounds, 6 %	b) as bicarbonate, 89 %	
- It is the combination with the	- CO2 combines with water to form	
terminal amino group of PP	carbonic	
chains of blood proteins as HB &	acid.	
plasma proteins. R-NH2 + CO2	- Carbonic acid being a weak	
$\rightarrow \text{R-NH-COOH-The}$	acid it dissociates into bicarbonate	
	ion (HCO3 ⁻) and H ⁺ .	
combination is <u>very rapid</u> without	, , , , , , , , , , , , , , , , , , ,	
<u>enzymes</u> .	$CO2 + H2O \rightarrow H2CO3 \rightarrow H^{+} + HCO3^{-}$	
-Since HB is <u>15 gm%</u> while PP is <u>7</u>		
gm%, CO2 bound with HB is <u>4</u>	Na HCO3-(mainly in plasma): K HCO3-	
% and that bound with PP is only	(mainly in RBCs)= $3/1$.	
<u>2</u> %.		

Importance of arterial Co2

it represent <u>a storage for a strong base</u> (Na HCO₃), this
 base that <u>neutralizes acids</u> formed inside
 the body by normal or abnormal metabolism it's called <u>alkali reserve.</u>

Lactic acid (strong acid) + Na $HCO3 \rightarrow$ Na lactate + H2CO3(weak acid).

Tidal Co₂

Def: it's the volume of Co₂ that's <u>added to each 100 ml of</u> <u>arterial blood</u> during its flow through the tissues <u>= 5 ml.</u>
<u>Fate of tidal CO₂:</u>

- It's carried by blood to the pulmonary capillaries where
 it <u>diffuses</u> into alveoli <u>and expelled outside the body</u>.
- P Co₂ in pulmonary capillaries = 46 mmHg & P CO₂
 in alveoli = 40 mmHg so there's pressure gradient of 6
 mmHg which allows Co₂ to cross the respiratory
 membrane.

- Tidal CO₂ is transported in the same way as arterial CO₂
 (i.e. in 2 forms):
- 1) **Physically dissolved (10%): in plasma and RBCs.**
- <u>Chemically combined (90%): in two forms.</u>
 <u>a) Carbamino compounds (20%):</u>
- Reduced Hb can bind much more CO₂ than oxy HB.
 So,% of cabamino compounds is more in venous blood than the arterial.
 - b) Bicarbonate ions (70%).

Questions

1-Which of these ratios is the% of O2 present inchemical combination with haemoglobin?

- 60% (a
- 80% (b
- 90% (c
- <u>98%</u> (d
- 2% (e

2-Describe O2 dissociation curve as regard its definition, significance, how to be obtained, shape and physiological significance

3-From O2 dissociation curve at arterial O2 pressure of • 100 mmHg the %saturation of haemoglobin in arterial blood will equal which of these values?

97.5% (a 100% (b 40% (c 60% (d 80% (e

3- mention factors that shift o2 dissociation curve to right

4- In which of these conditions the function of 2-3 • DPG increases ?

- Storage of blood (a
- In Fetal haemoglobin during pregnancy (b⁻
- Increased oxyhaemoglobin (c
- Muscular exercise (d

Absence of 1-3 DPG mutase (e