Respiration By d Gehan el wakeel

Respiratory function of the blood

O2 transport by blood

- Once oxygen has diffused from the alveoli into the pulmonary blood it is transported to the peripheral tissues.
- Each 100 ml arterial blood contains $\underline{\mathbf{1 9 . 5}} \mathrm{ml}$ O2 when $\mathrm{PO} 2=100 \mathrm{~mm} \mathrm{Hg}$, present in two forms:
- it's the volume dissolved physically in plasma.
- In arterial blood it equals $\mathbf{0 . 3 \mathrm { ml } / 1 0 0 \mathrm { ml }}$ blood. i.e 2% of O .
- it's the part of O2 carried by haemoglobin (HB).
- it equals $19.2 \mathrm{ml} / 100 \mathrm{ml}$ blood
i.e 98% of 02 .

Significance:

- It reflects $\mathbf{O 2}$ tension (P O2) in the blooit equals $\mathbf{0 . 3}$ $\mathrm{ml} / 100 \mathrm{ml}$ when $\mathbf{O 2}$ tension equals 100 mm Hg (arterial blood). while it equals $\underline{0.13} \mathbf{~ m l} / 100 \mathrm{ml}$ when O 2 tension equals 40 mm Hg (venous blood).

2) It acts as a pathway for the supply of O 2 to HB at lung and from HB to tissues at tissues.
-When blood reaches tissues, it is this small amount that is first transported to the cells and then it is replaced rapidly by more 02 from HB.

Haemoglobin (HB)

- is O 2 carrying pigment present in the blood.

Structure of HB: it's formed of:
1- Globin: a protein composed of 4 polypeptide chains:

$$
\underline{\alpha, \beta}, \gamma \& \delta .
$$

> according to the type of polypeptide chains, HB may be classified into:

HB A(adult)	$-2 \alpha(141$ aa) $+2 \boldsymbol{\beta}(146$ aa) chains. -
ii) HB A2	represents 98% of normal adult HB.
ii) HB F(fetal)	$-2 \alpha \& 2 \delta$ chains,represents 2% of adult HB
	$-2 \alpha \& 2 \gamma$.
	- present in fetal life and totally replaced by adult
	haemoglobin 6 months after birth.

Haemoglobin (HB)

2- 4 heme groups:

- each heme group contains a single ferrous iron, Fe^{++} in its centre.
- each Fe^{++}can combine with one molecules of O 2 so that each HB molecule can combine with 4 molecules of O 2 , this binding is Characterized by:
i) the reaction is rapid and reversible \& no enzymes..
ii) the reaction is oxygenation not oxidation as iron remains in the ferrous state.

HB

> Oxygen dissociation curve $=\mathrm{O}_{2}-\mathrm{HB}$ dissociation curve
def: it is a curve showing the relation between O 2 pressure (or tension $=\mathbf{P} \mathbf{~ O 2}$) and \% saturation of HB with $\mathbf{O 2}$.

Significance:

- from the curve we can study the factors that affect \% saturation of HB with O 2 in relation to O 2 tension of the blood.
- it is an important tool for understanding how our blood carries and releases oxygen.
- blood samples are placed in special vessels known as tonometers (special containers).
- each tonometer is exposed to certain 02 tension ($\mathbf{P} \mathbf{0 2}$) at 37 C . - $\mathbf{O 2}$ content(Is the vol. of $\mathbf{O 2}$ chemically combined to HB in 100 ml blood.) is determined \& divided by the $\mathbf{O 2}$ capacity(is the vol. of $\mathbf{O} 2$ chemically combined with HB in 100 ml blood when HB is fully saturated with O2). to get \% saturation, which then is put against 02 tension to get the curve.

How to obtain the curve

\% saturation ($=\underline{\mathbf{O 2} \text { content } \mathbf{x ~ 1 0 0)}) ~}$

O2 capacity

is used so that the curve is universal. if $O 2$ content
is used, the curve will not be universal because $\underline{02}$
content differs from a person to another.

Shape of the curve

- The curve has a characteristic sigmoid shape (not linear) because the combination O 2 with the HB molecules occurs in steps, where each combination facilitates the next i.e affinity of heme gp. To oxygen is increased gradually after first oxygenation.

Physiological significance of the curve

- The curve has the following characteristics:

1) Upper flat part (plateau).
2) Middle curved part (slope).
3) Lower vertical (steep).

1) Upper flat part (plateau)

-From the curve we note that:
a- The arterial $\mathrm{O}_{2} \%$ saturation doesn't change significantly until $\mathbf{P O}_{2}$ has decreased to 60 mm Hg :
at O_{2} pressure $\mathbf{1 0 0} \mathrm{mm} \mathrm{Hg} \rightarrow$ saturation \% not $\mathbf{1 0 0} \%$ (in the body it's only 97.5% due to the physiological shunt $\%$ saturation at the venous end of the pulmonary capillary blood $=\mathbf{1 0 0 \%} \%$ however in the arterial blood it drops to $\mathbf{9 7 . 5} \%$)

Cause:

- due to addition of venous blood from the bronchial and coronary veins.
> shunt).
> at O_{2} pressure $\mathbf{6 0} \mathrm{mm} \mathrm{Hg} \rightarrow \%$ sat. $=\mathbf{9 0} \%$
So marked $\downarrow \mathrm{O}_{2}$ pressure from 100 mmHg to $60 \rightarrow$ only little \downarrow in \% sat.: about 7.5% (in the body).
$\underline{\text { b- this indicates that alveolar or arterial } \mathrm{PO}_{2} \text { can be lowered }}$
by about $1 / 3$ without much \downarrow in $\%$ saturation i.e blood gets a good saturation with \mathbf{O}_{2} even if alveolar $\mathbf{P O}_{\mathbf{2}}$ fall to 60 mm Hg.

Significance:

- This enables persons living in high altitude, and those complaining of lung disease to get enough O_{2} in spite of $\downarrow \mathrm{PO}_{2} \quad$ in atmosphere \quad or in the alveolar air.

2) Middle curved (slope part):

- At $\mathrm{PO}_{2} \mathbf{4 0} \mathbf{m m ~ H g}$ (that of the venous blood during rest), the $\%$ saturation is 70% i.e during rest $\mathbf{3 0}$ $\%$ of O_{2} are given to the tissues.

Significance:

- his satisfies their needs, the remaining $\underline{\mathbf{7 0} \%}$ act as $\underline{\underline{v e n o u s} \boldsymbol{O}_{2}}$ reserve in blood for emergency conditions e.g muscular exercise.

3) Lower vertical (steep) part of the curve, we note that:

- Little \downarrow of $\mathbf{P O}_{2}$ below $40 \mathrm{mmHg} \rightarrow \quad$ marked \downarrow \% sat. i.e more O_{2} is unloaded from HB so supplies more O_{2} to tissues.

Significance:

- This enables peripheral tissues to withdraw large amount $\underline{o f ~}_{\underline{2}}^{2}$ for only a small drop in capillary PO_{2} as occurring in ms. excercise.

Percentage (\%) unloading

-Percentage (\%) unloading $=\%$ sat. in arterial blood $-\%$ sat. in venous blood.
-equals 30% during rest but \uparrow in ms. exercise $\boldsymbol{\&}$ may be $7 \mathbf{7 0}$ \% or even more.

Venous 02 reserve

-def: it's the volume of O_{2} that remains in venous blood after supplying tissues.

- this amount equals $14 \mathrm{ml} \mathrm{O}_{2}$ i.e 70% saturation during rest.
- this value \downarrow markedly during exercise.
- a number of factors can influence the affinity of $\mathbf{H B}$ to \mathbf{O}_{2} \& can shift the curve either to the Rt. or to the left.
A. Shift to the Right : means more $\mathbf{O 2}$ release from $\mathbf{H B}$ to tissues.
в. Shift to the left : means less $\mathbf{O 2}$ release from $\mathbf{H B}$ to tissues.

A- Factors that shift the curve to the right

1- $\uparrow \mathbf{H}+$ Concentration

- under acidic conditions, the amount of O_{2} bound to HB at any given PO_{2} is diminished, so the higher the H^{+} conc. \rightarrow the less O_{2} is bound to HB at any given PO_{2}.
- this is because when H^{+}ions bind with HB molecules it changes their molecular structure $\rightarrow \downarrow$ affinity to $\mathrm{O}_{2} \rightarrow$ $\uparrow \mathrm{O}_{2}$ release.

$$
\mathrm{H}^{+}+\mathrm{HBO} 2 \rightarrow \mathrm{H} \cdot \mathrm{HB}+\mathrm{O} 2
$$

$2) \uparrow \mathrm{PCO}_{2}$

$>$ has the same effects as \mathbf{H}^{+}conc., so the high the $\mathrm{PCO}_{2} \rightarrow$ the less O_{2} bound to HB i.e more O_{2} released to tissues .
> this effect because PCO_{2} can influence Ph in the following manner:

$$
\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3} \rightarrow \underline{\mathrm{H}}^{+}+\mathrm{HCO}_{3}^{-}
$$

3) \uparrow temperature

- the higher the temperature \rightarrow the less O_{2} bound to HB .
$\mathrm{HBO}_{2} \xrightarrow{\uparrow \text { temerature }} \mathrm{HB}+\mathrm{O}_{2}$
N.B: exercised ms. are acidic, hot and contain high $\mathrm{PCO}_{2} \rightarrow$ less $\mathrm{O}_{2} \quad$ bound to HB i.e more O_{2} released to tissues.

4) \uparrow 2,3 DPG (di-phospho-glycerate)

- 2,3 DPG is a substance formed inside RBCS to \uparrow release the oxygen from HB.

a-Formation:

> by side reaction in the glycolytic process (N.B: RBCs depend on anaerobic glycolysis because they have no mitochondria).

Glucose \rightarrow 1.3 DPG \rightarrow pyruvic acid \rightarrow lactic acid

the activity of 1,3 DPG mutase is stimulated by hypoxia and inhibited by oxy HB.

Functions of 2.3 DPG :

- it combines with β chain of $\mathrm{HB} \rightarrow$ release of O_{2} to the tissues.

Factors that \uparrow concentration of 2,3 DPG in RBCs include:
i- all conditions of hypoxia as: - anaemia. - high altitude.
ii- muscular exercise.
iii- some hormones as testosterone, growth hor., thyroxine \& catecholamines.
iv-during pregnancy.

Function of 2,3 DPG is \rfloor ed in:

i) Fetal HB:

- fetal HB can't bind to 2,3 DPG as it doesn't contain β chain so its affinity to O 2 is higher than adult HB .
ii) Stored blood: as the preservative used destroy $2,3 \mathrm{DPG}$. B - Factors that shift the curve to the left

1) $1 \mathrm{H}^{+}$conc.
2) $1 \mathrm{PCO}_{2}$ -
3) Temp. : so in cold weather although cheeks \& ears are red little $\mathrm{O}_{2} \underline{\text { is released to the tissues . }}$

4) \downarrow 2.3 DPG:

this occurs in stored blood because of the preservative used
accordingly the HB affinity to $\mathrm{O}_{\mathbf{2}}$ is increased \& less $\mathrm{O}_{\mathbf{2}}$ delivered to the tissues .
5) Carbon monoxide poisoning:

- causes maximum shift to left as the affinity of HB for CO is 210 times that for $\mathbf{O} 2$.
-CO prevents release of the remaining oxygen from HB .

CO_{2} transport by blood

- When oxygen is used by the cells, all of it is converted into CO 2 which diffuses from the cells to the blood.
- each 100 ml arterial blood that enters the tissues already carries $\underline{\mathbf{5 0}} \mathrm{ml} \mathrm{Co}_{2}$, this large amount is carried in two forms:

1-Physically dissolved =5\%:

- dissolved in plasma \& RBCS.
- responsible for PCO (CO2 tension).

2-Chemically combined = 95% :
a) Carbamino compounds, 6 \% \quad b) as bicarbonate, 89 \%

- It is the combination with the terminal amino group of PP chains of blood proteins as HB \& plasma proteins. R-NH2 + CO2 \rightarrow R-NH-COOH -The combination is very rapid without enzymes.
-Since HB is $\underline{15 \mathrm{gm} \%}$ while PP is $\underline{7}$ $\mathbf{g m \%}, C O 2$ boundwith HB is $\underline{4}$ \% and that bound with PP is only 2 \%.
- CO2 combines with water to form carbonic
acid.
- Carbonic acid being a weak acid it dissociates into bicarbonate ion (HCO^{-}) and H^{+}.

$$
\mathrm{CO} 2+\mathrm{H} 2 \mathrm{O} \rightarrow \mathrm{H} 2 \mathrm{CO} 3 \rightarrow \mathrm{H}^{+}+\mathrm{HCO}^{-}
$$

$\mathrm{Na} \mathrm{HCO3}^{- \text {(mainly in plasma) }}$: $\mathrm{K} \mathrm{HCO3}^{-}$ (mainly in RBCs) $=3 / 1$.

Importance of arterial Co2

- it represent a storage for a strong base $\left(\mathrm{NaHCO}_{3}\right)$, this base that neutralizes acids formed inside the body by normal or abnormal metabolism it's called alkali reserve.

Lactic acid $($ strong acid $)+\mathrm{NaHCO3} \rightarrow$ Na lactate $+\mathrm{H} 2 \mathrm{CO} 3($ weak acid).

Tidal Co

Def: it's the volume of Co_{2} that's added to each 100 ml of arterial blood during its flow through the tissues $\equiv \mathbf{5} \mathbf{~ m l}$.

Fate of tidal CO_{2} :

- It's carried by blood to the pulmonary capillaries where it diffuses into alveoli and expelled outside the body .
- PCo_{2} in pulmonary capillaries $=46 \mathrm{mmHg} \& \mathrm{PCO}_{2}$ in alveoli $=40 \mathrm{mmHg}$ so there's pressure gradient of 6 mmHg which allows Co_{2} to cross the respiratory membrane.
- Tidal CO_{2} is transported in the same way as arterial $\mathbf{C O}_{2}$ (i.e. in 2 forms):

1) Physically dissolved ($\mathbf{1 0 \%}$): in plasma and RBCs.
2) Chemically combined (90%): in two forms.
a) Carbamino compounds (20%):

- Reduced Hb can bind much more CO_{2} than oxy HB.

So,\% of cabamino compounds is more in venous blood than the arterial.
b) Bicarbonate ions $\mathbf{(7 0 \%}$).

Questions

1 -Which of these ratios is the $\%$ of O 2 present in chemical combination with haemoglobin?

```
60% (a
    8o% (b
90% (c
98% (d
2%
```

2-Describe O 2 dissociation curve as regard its definition, significance, how to be obtained, shape and physiological significance
3-From O2 dissociation curve at arterial O 2 pressure of 100 mmHg the \%saturation of haemoglobin in arterial blood will equal which of these values?
97.5\% (a

100\%
40\%
60\% (d
8o\% (e

3- mention factors that shift o2 dissociation curve to right
4- In which of these conditions the function of 2-3
DPG increases?
Storage of blood
In Fetal haemoglobin during pregnancy (b^{-}
Increased oxyhaemoglobin
(c
Muscular exercise
(d
Absence of 1-3 DPG mutase (e

