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COURSE TOPICS:
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13.3 Bernoulli’s Equation
13.4 Static consequence of Bernoulli’s equation 



Introduction:
• In this chapter we discuss fluids at rest and non-viscous (frictionless) fluids motion. 

• We first develop an understanding of why an object may either sink or float in a fluid at rest? (Archimedes’ 

principle). 

• We then develop the Bernoulli’s Equation, which puts work and energy concepts into a form suitable for fluids. 

• Then, we can understand why fluids in connected containers tend to have the same surface levels? And how 

fluids flow  from one place to another?

• On this discussion, the important condition is the assumption that the fluid is incompressible:

• Incompressible fluid: a given mass of fluid always occupies the same volume though its shape may 

change.

• In fluid mechanics, as a given mass of fluid does not have a fixed shape, the density and pressure are 

commonly used instead of mass and force.

• Recall that : 

• The density is the mass per unit volume: 𝝆𝝆 = 𝒎𝒎/𝑽𝑽

• The pressure is the force per unit area: 𝒑𝒑 = 𝑭𝑭/𝑨𝑨



13.1: Archimedes’ principle
• An object floating or submerged in a fluid experiences an upward or 

Buoyant force due to the fluid.
• Archimedes’ principle states that the buoyant force 𝐵𝐵 on the object is equal 

to the weight of the displaced fluid:

• Consider a solid of volume 𝑉𝑉 and density 𝜌𝜌 completely submerged in a 
fluid of density 𝜌𝜌0. 

• The displaced fluid by the solid has a mass 

𝑚𝑚𝐷𝐷 = 𝜌𝜌0𝑉𝑉𝐷𝐷
𝑤𝑤𝐷𝐷 = 𝑚𝑚𝐷𝐷g = 𝜌𝜌0𝑉𝑉𝐷𝐷g

• Only gravity and the surrounding fluid exert forces on the segment. 

𝐵𝐵 = 𝜌𝜌0𝑉𝑉𝐷𝐷g

• The buoyant force is the resultant force exerted by fluid on the surface of a submerged solid.

• Since it remains at rest, the force, B, exerted by the remainder of the fluid must balance the weight

• The buoyant force (which is the weight of the displaced fluid) is then:



13.1: Archimedes’ principle
• Suppose now that this imaginary segment of fluid is 

replaced by a heavier object of volume 𝑉𝑉 suspended 
by a string in the fluid. 
The surrounding fluid does not distinguish between 
the object and the fluid it replaces, so the buoyant 
force is the same.

𝐵𝐵 = 𝜌𝜌𝑜𝑜𝑉𝑉𝐷𝐷 g
•  Thus, the buoyant force on the object is equal to the weight of the displaced fluid:

• The tension in the string is decreased when the object is placed in the fluid. 
• The density of the suspended object is 𝜌𝜌, and its weight is 𝑤𝑤 = 𝜌𝜌g𝑉𝑉. 
• The upward forces are the tension 𝑻𝑻 and the buoyant force, 𝐵𝐵 = 𝜌𝜌0g𝑉𝑉. 
• Since it is equilibrium, 

             𝑇𝑇 + 𝐵𝐵 = 𝑤𝑤 
                 𝑇𝑇 = 𝑤𝑤 − 𝐵𝐵 = 𝜌𝜌g𝑉𝑉 − 𝜌𝜌0g𝑉𝑉 

• The tension in the string is reduced by the weight of the displaced fluid.
• Archimedes' principle provides a way to determine densities

𝑇𝑇 = 𝜌𝜌 − 𝜌𝜌0 g𝑉𝑉 



13.1: Archimedes’ principle
Example: What is the magnitude of the buoyant force exerted on a piece of solid of volume 𝑉𝑉=15 𝑐𝑐𝑚𝑚3 completely 
immersed in water.

Answer

𝐵𝐵 = 𝜌𝜌0𝑉𝑉𝐷𝐷g = 1000
kg
m3 15 × 10−6 𝑚𝑚3 9.8

m
s2

= 0.147𝑁𝑁



13.1: Archimedes’ principle
Example 13.1: A piece of metal of unknown volume 𝑉𝑉 is suspended 
from a string. Before submersion, the tension in the string is 10 𝑁𝑁. 
When the metal is submerged in water the tension is 8 N. The water 
density is 𝜌𝜌𝑜𝑜 = 103 𝑘𝑘𝑔𝑔/𝑚𝑚3. (a) calculate the buoyant force (b) 
calculate the volume of the piece of metal (c) What is the density of 
the metal?
solution:

a) Before submersion (Fig. 13.2 a) the tension of the cord is equal to the weight of the piece of metal: 

           𝑇𝑇𝑖𝑖 = 𝑤𝑤 = 𝑚𝑚g = 10𝑁𝑁
    After submersion (Fig. 13.2 b), since the object is in equilibrium: 
              𝑇𝑇𝑓𝑓 + 𝐵𝐵 − 𝑤𝑤 = 0
    Then the buoyant force is 
     𝐵𝐵 = 𝑤𝑤 − 𝑇𝑇𝑓𝑓 = 𝑇𝑇𝑖𝑖 − 𝑇𝑇𝑓𝑓 = 10𝑁𝑁 − 8𝑁𝑁 = 2𝑁𝑁
b) The buoyant force is 𝐵𝐵 = 𝜌𝜌𝑜𝑜 𝑉𝑉𝐷𝐷 𝑔𝑔.  The piece of metal is completely submerged in the fluid, then the volume of the 

displaced fluid is equal to the volume of the solid: 
𝑉𝑉 = 𝑉𝑉𝐷𝐷 = B

ρ 0 g
= 2  𝑁𝑁

( 1 0 0 0 𝑘𝑘 𝑘𝑘 / 𝑚𝑚 3 ) ( 9 . 8  𝑚𝑚 / 𝑠𝑠 2 )
= 2 . 0 4 1 × 1 0 − 4  𝑚𝑚 3 = 2 0 4 . 1  𝑐𝑐 𝑚𝑚 3  

c) Before submersion, the tension is      𝑇𝑇𝑖𝑖 = 𝑚𝑚g = 𝜌𝜌g𝑉𝑉 

    After submersion, the tension is         𝑇𝑇𝑓𝑓 = 𝜌𝜌 − 𝜌𝜌0 g𝑉𝑉 

    Divide the two equations:     
𝑇𝑇𝑓𝑓
𝑇𝑇𝑖𝑖

= 𝜌𝜌−𝜌𝜌0
𝜌𝜌

 ⟹  𝜌𝜌 = 𝜌𝜌0𝑇𝑇𝑖𝑖
𝑇𝑇𝑖𝑖−𝑇𝑇𝑓𝑓

= 1000 𝑘𝑘𝑘𝑘 𝑚𝑚−3 10 𝑁𝑁
10 𝑁𝑁−8 𝑁𝑁

= 5000 𝑘𝑘𝑔𝑔/𝑚𝑚3



13.1: Archimedes ’ pr inc iple
          Partially submerged
• If an object of volume 𝑉𝑉 is not completely immersed in a fluid, the displaced 

volume is equal to the submerged volume of the solid 𝑉𝑉𝑠𝑠  ( volume of the 
part of the solid below the top surface of the fluid) . 

• Then a quantity without unit called submerged fraction is defined by the ratio 
of the submerged volume and the total volume of the solid: 𝑽𝑽𝑺𝑺

𝑽𝑽

• By equating the buoyant force and the weight of the object 

                            𝐵𝐵 =  𝑤𝑤,

                          𝜌𝜌𝑜𝑜 𝑔𝑔 𝑉𝑉𝑠𝑠= 𝜌𝜌 𝑔𝑔𝑉𝑉

• The submerged fraction is then equal to the ratio of the density of

𝜌𝜌
𝜌𝜌0

=
𝑉𝑉𝑠𝑠
𝑉𝑉

 

• Thus, the ratio of the densities is equal to the fraction of the volume submerged. 



13.1: Archimedes ’ pr inc iple
          Partially submerged

Example 13.2: The density of ice is 920 𝑘𝑘𝑔𝑔/𝑚𝑚3 while that of sea water is 
1025 𝑘𝑘𝑔𝑔/𝑚𝑚3. What fraction of an iceberg is submerged?

Solution:
The fraction is 

Almost 90 percent of the iceberg is submerged.



13.1: Archimedes ’ pr inc iple
          Partially submerged
Example 13.3: A child holds a helium-filled rubber balloon with a volume 
of 10 litres = 0.01 m3 in air at 0 ℃ (Fig. 13.2a). Neglect the weight of the 
rubber and string and the buoyant force of the air on the child. (a) How 
great a force must she exert to keep the balloon from rising? (b) How 
many such balloons would it take to lift a 20-kg child?
Solution:
(a) According to Table 13.1, at 0 ℃ the density of helium is 0.178 𝑘𝑘𝑔𝑔/𝑚𝑚3, and the 
density of air is 1.29 𝑘𝑘𝑔𝑔/𝑚𝑚3. The weight of the helium 𝑤𝑤 = 𝜌𝜌𝐻𝐻𝐻𝐻𝑔𝑔𝑉𝑉 is less than the 
upward buoyant force 𝐵𝐵 = 𝜌𝜌air𝑔𝑔𝑉𝑉, since air is denser. 
Hence the child must pull down on the balloon with a force 𝑻𝑻 to keep it from rising. If the balloon remains at rest,

(b) Her weight is 𝑤𝑤 = 𝑚𝑚𝑔𝑔 = 20 𝑘𝑘𝑔𝑔 × 9.8 𝑚𝑚 𝑠𝑠−2 = 196 𝑁𝑁. 
Since each balloon can support 0.109 N, the number of balloons needed to balance her weight is

196
0.109

= 1800 baloon



13.2 The equation of continuity; Streamline flow
• The flow rate 𝑄𝑄 is the volume of the fluid flowing past a point in a channel per unit time:

𝑄𝑄 = ∆𝑉𝑉
∆𝑡𝑡

 

The S.I unit of the flow rate is cubic meters per second, 𝒎𝒎𝟑𝟑/𝒔𝒔.

• For an incompressible fluid  (𝜌𝜌 = 𝑐𝑐𝑜𝑜𝑛𝑛𝑠𝑠𝑡𝑡𝑎𝑎𝑛𝑛𝑡𝑡), the volume of fluid that passes any section of the tube per 
second is unchanged. 

• The fluid that enters one end of the channel such as a pipe or an artery at the flow rate 𝑄𝑄1, must leave the 
other end at a rate 𝑄𝑄2 which is the same.

•  Thus, the equation of continuity can be written as

𝑄𝑄1  = 𝑄𝑄2



13.2 The equation of continuity; Streamline flow
• Consider a section of the tube with cross-sectional area 𝐴𝐴 

and suppose that the fluid on this section has the same 
velocity 𝑣𝑣. 

• In the time ∆𝑡𝑡 the fluid moves the distance 
          ∆𝑥𝑥 =  𝑣𝑣∆𝑡𝑡 

• The volume of the fluid crossing the tube is 
        ∆𝑉𝑉 = 𝐴𝐴 ∆𝑥𝑥 = 𝐴𝐴𝑣𝑣 ∆𝑡𝑡. 

• The flow rate is then 
     

𝑄𝑄 =
∆𝑉𝑉
∆𝑡𝑡

= 𝐴𝐴𝑣𝑣

• The flow rate equals the cross-sectional area of the channel times the velocity of the fluid.
• For a channel, whose cross-section changes from 𝐴𝐴1 to 𝐴𝐴2 , this result together with 𝑄𝑄1 = 𝑄𝑄2 gives 

another form of the continuity equation:

𝐴𝐴1𝑣𝑣1 = 𝐴𝐴2𝑣𝑣2

• The product of the cross-sectional area and the velocity of the fluid is constant



13.2 The equation of continuity; Streamline flow
Example 13.4;
A water pipe leading up to a hose has a radius of 1 𝑐𝑐𝑚𝑚. Water leaves the hose at a rate of 3 litres per minute.
1. Find the velocity of the water in the pipe.
2. The hose has a radius of 0.5 𝑐𝑐𝑚𝑚. What is the velocity of the water in the hose?
Answer
1. The velocity (strictly speaking, the average velocity) can be found from the flow rate and the area: 𝑄𝑄 = 𝐴𝐴𝑣𝑣
The flow rate is the same in the hose and in the pipe.
Using 1 𝑙𝑙𝑖𝑖𝑡𝑡𝑟𝑟𝑒𝑒 = 10−3 𝑚𝑚3 and 1 min = 60 𝑠𝑠, the flow rate is then:

We will call the velocity and area in the pipe 𝑣𝑣1 and 𝐴𝐴1, respectively. Then, with 𝑄𝑄 = 𝐴𝐴 𝑣𝑣, we have:

𝑣𝑣1 =
𝑄𝑄
𝐴𝐴1

=
𝑄𝑄
𝜋𝜋𝑟𝑟12

=
5 × 10−5 𝑚𝑚3 𝑠𝑠−1

𝜋𝜋 0.01 𝑚𝑚 2 = 0.159 𝑚𝑚3/𝑠𝑠

2. The flow rate is constant, so 𝐴𝐴1 𝑣𝑣1 = 𝐴𝐴2 𝑣𝑣2 , and the velocity 𝑣𝑣2 in the hose is



13.3 Bernoulli’s equation
• Bernoulli’s equation states the consequences of the principle that the work done on a fluid as 

it flows from one place to another is equal to the change in its mechanical energy.
• Bernoulli’s equation can be used for the following conditions :

1. The fluid is incompressible, then its density remains constant. 
2. The fluid is non-viscous (no mechanical energy is lost).
3. The flow is streamline, not turbulent.
4. The velocity of the fluid at any point does not change during the period of observation. 

(This is called the steady-state assumption.)

• Consider the fluid in a section of a flow tube with a 
constant cross section 𝐴𝐴 (Fig. a). 

• According to the equation of continuity, the product 
𝐴𝐴𝑣𝑣 remains constant. 

• Thus the velocity 𝑣𝑣 does not change as the fluid 
moves through the tube, and its kinetic energy 
remains the same. 

• However, the potential energy changes as the fluid 
rises.



13.3 Bernoulli’s equation
• The net force on the fluid in the tube due to the surrounding fluid is the cross-sectional area A times 

the difference in pressures on the ends, or 

• If the fluid in the section moves a short distance ∆𝑥𝑥, then the work done on it is the product of the 
force and the displacement 

• With   ∆𝑉𝑉 = 𝐴𝐴∆𝑥𝑥, then 
𝑊𝑊 = 𝑃𝑃𝑎𝑎 − 𝑃𝑃𝑏𝑏  ∆𝑉𝑉

𝑊𝑊 = 𝐹𝐹∆𝑥𝑥 = 𝑃𝑃𝑎𝑎 − 𝑃𝑃𝑏𝑏 𝐴𝐴∆𝑥𝑥

𝐹𝐹 = 𝑃𝑃𝑎𝑎 − 𝑃𝑃𝑏𝑏 𝐴𝐴

• This work done on the fluid must equal the in crease ∆𝒰𝒰 in its potential energy. 
• ∆𝒰𝒰 can be calculated if we note that the fluid leaving the section has a mass 𝜌𝜌∆𝑉𝑉 and a potential energy 

𝜌𝜌∆𝑉𝑉 g𝑦𝑦b, while the fluid entering at the bottom of the section has a potential energy 𝜌𝜌∆𝑉𝑉 g𝑦𝑦a. Thus,

• Equating this to 𝑊𝑊, we have

or

Thus, the pressure 𝑃𝑃 plus the 
potential energy per unit volume 
𝜌𝜌g𝑦𝑦 of the fluid is the same 
everywhere in the flow tube if the 
velocity remains constant.



13.3 Bernoulli’s equation

• More generally, if the cross-sectional area of the flow tube 
changes, the fluid velocity 𝑣𝑣 and kinetic energy per unit volume  
1
2
𝜌𝜌𝑣𝑣2 will also change. 

• The work done on the fluid must then be set equal to the 
change in the potential plus kinetic energy of the fluid. The 
result is Bernoulli's equation,

• The pressure plus the total mechanical energy per unit volume, 𝑃𝑃 + 𝜌𝜌g𝑦𝑦 + 1
2
𝜌𝜌𝑣𝑣2, is the same 

everywhere in a flow tube.



13.3 Bernoulli’s equation

Case Schematic representation Bernoulli’s Equation

Horizontal tube with non- 
uniforme size

𝑦𝑦1 = 𝑦𝑦2

𝑃𝑃1 +
1
2
𝜌𝜌𝑣𝑣12 = 𝑃𝑃2 +

1
2
𝜌𝜌𝑣𝑣22

Non-Horizontal tube with 
uniform size.

𝐴𝐴1 = 𝐴𝐴2
𝐴𝐴1𝑣𝑣1 = 𝐴𝐴2𝑣𝑣2

Then 𝑣𝑣1 = 𝑣𝑣2

𝑃𝑃1 + 𝜌𝜌𝑔𝑔𝑦𝑦1 = 𝑃𝑃2 + 𝜌𝜌𝑔𝑔𝑦𝑦2

Static fluid (𝒗𝒗 = 𝟎𝟎)
𝑃𝑃1 + 𝜌𝜌𝑔𝑔𝑦𝑦1 = 𝑃𝑃2 + 𝜌𝜌𝑔𝑔𝑦𝑦2

Hydrostatic Equation

Specific forms of the Bernoulli’s equation



13.4 Static consequences of Bernoulli’s equation

When the fluid is at rest (𝒗𝒗 = 𝟎𝟎), Bernoulli’s equation is written as:

𝑃𝑃 + 𝜌𝜌𝑔𝑔𝑦𝑦 = 𝑐𝑐𝑜𝑜𝑛𝑛𝑠𝑠𝑡𝑡𝑎𝑎𝑛𝑛𝑡𝑡
Pressure in a fluid at rest:
the last form of the Bernoulli’s equation can be used to calculate the 
pressure everywhere in the fluid. For example, from the figure find the 
pressure at a point 𝐵𝐵 in terms of the pressure at surface and the 
depth.

Using Bernoulli’s equation, we can write:

At the surface 𝑆𝑆𝐴𝐴,   𝑃𝑃𝐴𝐴 + 𝜌𝜌𝑔𝑔𝑦𝑦𝐴𝐴 = 𝑐𝑐𝑜𝑜𝑛𝑛𝑠𝑠𝑡𝑡𝑎𝑎𝑛𝑛𝑡𝑡 and at the surface 𝑆𝑆𝐵𝐵,    𝑃𝑃𝐵𝐵 + 𝜌𝜌𝑔𝑔𝑦𝑦𝐵𝐵 = 
𝑐𝑐𝑜𝑜𝑛𝑛𝑠𝑠𝑡𝑡𝑎𝑎𝑛𝑛𝑡𝑡.

Then 
         𝑃𝑃𝐴𝐴 + 𝜌𝜌𝑔𝑔𝑦𝑦𝐴𝐴 = 𝑃𝑃𝐵𝐵 + 𝜌𝜌𝑔𝑔𝑦𝑦𝐵𝐵 
or 
                𝑃𝑃𝐵𝐵 = 𝑃𝑃𝐴𝐴 + 𝜌𝜌𝑔𝑔 ( 𝑦𝑦𝐴𝐴 − 𝑦𝑦𝐵𝐵) = 𝑃𝑃𝐴𝐴 + 𝜌𝜌𝑔𝑔𝑑𝑑

If the pressure at the surface 𝑆𝑆𝐴𝐴 is equal to the atmospheric pressure so 𝑃𝑃𝐴𝐴 = 𝑃𝑃𝑎𝑎𝑡𝑡𝑚𝑚
then :
                 𝑃𝑃𝐵𝐵 = 𝑃𝑃𝑎𝑎𝑡𝑡𝑚𝑚 + 𝜌𝜌𝑔𝑔𝑑𝑑



13.4 Static consequences of Bernoulli’s equation
• This result shows that pressure at a depth 𝑑𝑑 in a fluid at rest 

is equal to the surface pressure plus the potential energy 
density change 𝜌𝜌𝑔𝑔𝑑𝑑 corresponding to this depth.

 Calculating 𝑃𝑃 + 𝜌𝜌𝑔𝑔𝑦𝑦 at points 𝐵𝐵 and 𝐷𝐷 gives:

since 𝑦𝑦𝐵𝐵 = 𝑦𝑦𝐷𝐷 then
𝑃𝑃𝐵𝐵 + 𝜌𝜌𝑔𝑔𝑦𝑦𝐵𝐵 = 𝑃𝑃𝐷𝐷 + 𝜌𝜌𝑔𝑔𝑦𝑦𝐷𝐷

𝑃𝑃𝐵𝐵 = 𝑃𝑃𝐷𝐷

• Thus, the pressure at the same depth at two places in a fluid at rest is the same. The surfaces of 
liquids at rest in connected containers of any shape must be at the same height if they are open to 
the atmosphere.

Example 13 .5 : 
What is the pressure on a swimmer 5 m below the surface of a lake?
Answer: Using 𝑑𝑑 = 5 𝑚𝑚 and ρ = 1000 𝑘𝑘𝑔𝑔 𝑚𝑚−3, we find



13.4 Static consequences of Bernoulli’s equation
Example : The pressure at the floor is measured to be normal atmospheric pressure, its 
value is 𝑃𝑃𝑎𝑎𝑡𝑡𝑚𝑚 = 1.013 𝑏𝑏𝑎𝑎𝑟𝑟.
1) How much is the pressure at a height of 1000 𝑚𝑚 .
2) You are in scuba diving at a 10 𝑚𝑚 depth, you feel pain in the ears. Explain why?

Solution:

Here, 𝑑𝑑 = 1000 𝑚𝑚. From Table 13.1 (p. 315) the density of air at atmospheric pressure and 
0° 𝐶𝐶 is 𝜌𝜌 = 1.29 𝑘𝑘𝑔𝑔. 𝑚𝑚−3

Thus: 



13.4 Static consequences of Bernoulli’s equation

The manometer: the open-tube manometer is a U-shaped tube used for measuring gas 
pressures (or liquid pressure if doesn’t mix with the manometer fluid). It contains a 
liquid that may be mercury or, for measurements of low pressures, water or oil.
In the Figure the pressure of the gas ( the pressure to measure) is equal to the pressure 
on the liquid at the left arm 𝑃𝑃𝐴𝐴 = 𝑃𝑃𝑔𝑔𝑎𝑎𝑠𝑠
At the right arm the pressure of the mercury is 𝑃𝑃𝐵𝐵 = 𝑃𝑃𝑎𝑎𝑡𝑡𝑚𝑚 + 𝜌𝜌𝑔𝑔ℎ
As 𝑃𝑃𝐴𝐴 = 𝑃𝑃𝐵𝐵 (same level), then:

                                         𝑃𝑃𝑔𝑔𝑎𝑎𝑠𝑠 = 𝑃𝑃𝑎𝑎𝑡𝑡𝑚𝑚 + 𝜌𝜌𝑔𝑔ℎ

Thus, a measurement of the height difference h of the two columns determines the gas pressure 𝑃𝑃𝑔𝑔𝑎𝑎𝑠𝑠

The gauge pressure : is the difference between the absolute pressure and the atmospheric pressure. In the 
above equation𝑃𝑃𝑔𝑔𝑎𝑎𝑠𝑠is the absolute pressure, then the gauge pressure is 𝑃𝑃𝑔𝑔 = 𝑃𝑃𝑔𝑔𝑎𝑎𝑠𝑠 − 𝑃𝑃𝑎𝑎𝑡𝑡𝑚𝑚

𝑷𝑷𝒈𝒈 = 𝑷𝑷𝒈𝒈𝒈𝒈𝒔𝒔 − 𝑷𝑷𝒈𝒈𝒂𝒂𝒎𝒎 = 𝝆𝝆𝐠𝐠𝒉𝒉

For example, the blood pressure given by a sphygmomanometer is the gauge pressure 𝜌𝜌𝑔𝑔ℎ



13.4 Static consequences of Bernoulli’s equation
Cannulation: In many experiments with anesthetized animals, the blood 
pressure in an artery or vein is measured by the direct insertion into the 
vessel of a cannula, which is a small glass or plastic tube containing saline 
solution plus an anticlotting agent.
The saline solution, in turn, is in contact with the fluid in a manometer. 
It’s necessary to have the surface of contact between the saline solution 
and the manometer fluid either at the same level as the insertion point of 
the cannula or to correct for the height difference.

The pressure at the artery is: 

                𝑃𝑃𝐵𝐵 = 𝑃𝑃𝑎𝑎𝑡𝑡𝑚𝑚 + 𝜌𝜌𝑔𝑔ℎ − 𝜌𝜌𝑠𝑠𝑔𝑔ℎ′

Where 𝜌𝜌𝑠𝑠 is the density of the saline solution and 𝜌𝜌 is the density of the 
manometer fluid.



13.6 Blood pressure-Sphygmomanometer
During a complete heart pumping cycle, the pressure in the heart and the circulatory system goes through 
both a maximum Systolic ( as the blood is pumped from the heart) and a minimum Diastolic ( as the heart 
relaxes and fills with blood returned from the veins). 
The sphygmomanometer is used to measure these extreme pressures.
The sphygmomanometer (Figure 13.10) is used in the upper human arm where it gives values nearly close to 
the pressure in the heart. Also, the upper arm contains a single bone making the brachial artery located there 
easy to compress.
Blood pressures are usually presented as 𝑆𝑆𝑦𝑦𝑠𝑠𝑡𝑡𝑜𝑜𝑙𝑙𝑖𝑖𝑐𝑐/𝐷𝐷𝑖𝑖𝑎𝑎𝑠𝑠𝑡𝑡𝑜𝑜𝑙𝑙𝑖𝑖𝑐𝑐 ratios. 
Typical readings for resting healthy adult are about 120/80 in torr (mm Hg), the borderline for high pressure 
(hypertension) is usually defined to be 140/90. Pressures above that level needs medical attention.
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