

# HEMATOPOIETIC E LYMPHATIC 545TEM

# -HAYAT BATCH-

SUBJECT : Phárma LEC NO. : 3/ DONE BY : Abá

و قول المستار المس مستار المستار مستا



# DRUG THERAPY OF THROMBOSIS

# Thrombosis:

 Thrombosis is a pathological condition resulting from inappropriate activation of the hemostatic mechanisms i.e. platelet aggregation & <u>coagulation (fibrin formation)</u>.
*thrombi* have the ability to cause occlusions in the blood vessels which reduces blood

# MECHANISMS OF BLOOD COAGULATION:

#### A. In the absence of injury of vesseles:

- Resting platelets circulate freely and platelet activation and aggregation are not

initiated due to:

# 1. Chemical mediators (synthesized by endothelial cells):

- Prostacyclin (PGI<sub>2</sub>): binds to its <u>platelet membrane receptors</u>  $\rightarrow$ 
  - $\uparrow \text{ intracellular cAMP} \rightarrow \underbrace{\downarrow \text{ free intracellular Ca}^{++}}_{\text{'used as vasodilator'}} \xrightarrow{\downarrow} \frac{1}{2} \underbrace{\downarrow \text{ intracellular Ca}^{++}}_{\text{their release & inactivates fibrinogin}} \xrightarrow{\downarrow} \text{ preventing}$
- Nitric oxide (NO): binds to its platelet membrane receptors  $\rightarrow$
- ↑ intracellular cGMP  $\rightarrow \downarrow$  free intracellular Ca++
  - $\downarrow$  free intracellular Ca<sup>++</sup> →

⇒ PCI<sub>2</sub> & UO cause also vasodilitation which gives platelets more space thus prevents them from contact with each other.

supply to tissues Leading to inforctions.

- Inhibits release of platelet aggregation agents from granules
- Stabilizes inactive GPIIb/IIIa receptors.

4 fibrinogen receptors

-  $\downarrow$  synthesis of TXA<sub>2</sub>

2. The intact endothelium covers subendothelial collagen and circulating levels of thrombin and TXA<sub>2</sub> are low.  $\lambda_{i} \beta_{j} \beta_{j}$  and  $\lambda_{i} \beta_{i} \beta_{j}$  and  $\lambda_{i} \beta_{i} \beta_{i}$ 

#### **B.** In response to vascular injury:

**1. Vasospasm** of injured blood vessel.

2. Platelets functions:

 Platelets adhesion: platelets stick to collagen and von Willebrand factor (vWf) released at area of injury → a complex series of chemical reactions → platelet activation.

- **Platelets activation:** Activated platelets <u>release chemicals</u> such as:
  - <u>ADP</u>  $\rightarrow \downarrow$  intracellular cAMP  $\rightarrow \uparrow$  free intracellular Ca<sup>++</sup>  $\rightarrow$ <u>platlets activation and aggregation</u> stort+s to bind with fibringen receptors form
  - <u>Thromboxane<sub>A2</sub></u> (synthesized by <u>COX-I enzyme</u>) → platlets a mesh world that aggregation. <sup>2</sup> Causes vaso constriction
  - <u>Serotonin</u>  $\rightarrow$  further potentiates vasoconstriction
  - PAF " platelet activating factor ,
  - Activated platelets also express on their surface:
    - Certain proteins (receptors) that attach to:
      - -vWf (synthesized by the endothelium of blood vessels)
      - fibrinogen (glycoprotein IIb/IIIa)
      - collagen (glycoprotein Ia)
    - A crucial clotting protein called thrombin.

Platelets aggregation:

2» turns soluble fibringen to insoluble fibrin

- The <u>activation of platelets</u>  $\rightarrow$  <u>release of sequestered Ca<sup>++</sup> stores</u>  $\rightarrow$
- ↑ free intracellular  $Ca^{++} \rightarrow$ 
  - o Release of platelet aggregation agents from granules
  - Active of GPIIb/IIIa receptors that bind fibrinogen
  - Activation of TXA2
- <u>Fibrinogen (a soluble plasma GP)</u>  $\rightarrow$  binds to GPIIb/IIIa receptors Connecting them on two separate platelets  $\rightarrow$  platelet cross-linking and platelet

aggregation  $\rightarrow$  each activated platelet can recruit other platelets

Platelets plug: platelets loss their individual membrane forming

gelatinous mass  $\rightarrow$  arrest bleeding.

⇒ platelet plug must be reinforced to remain stable as it can stop bleeding but can be taken off easily

#### 3. Fibrin clott:

- Tissue factors (from the injured tissue) + mediators (on the surface of

platelets)  $\rightarrow$  local stimulation of the clotting cascade  $\rightarrow$  formation of

thrombin (factor lla)  $\rightarrow$  hydrolysis of fibrinogen to fibrin  $\rightarrow$  the platelet

plug is reinforced by fibrin.

- Subsequent cross-linking of the fibrin strands stabilizes the clot.

→ Thrombin: - turns librinogen to librin thus stablize platelets plug - Also activates factor XIII · fibrin stabilizing factors ↑ clot strength **4. Fibrinolysis:** Tissue plasminogen activator (t-PA)  $\rightarrow$  activation of

plasminogen to plasmin  $\rightarrow$  splits fibrin and fibrinogen into fragments  $\rightarrow$  clot

dissolution.  $\rightarrow$  Talkes time  $\longrightarrow$  inforction before restoring blood supply

# There are 2 types of thrombus:

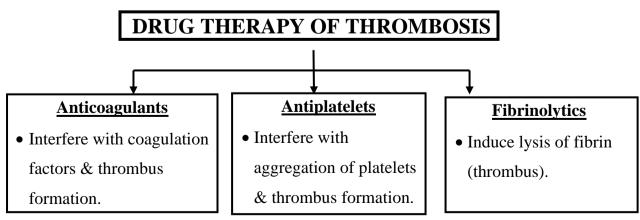
- 1. White thrombus: formed in arteries due to platelets adhesion. <u>High</u> <sup>2</sup>/<sub>2</sub> Main component is platelets thus treated by Antiplatelets pressure circulation leads to vessels injury.
  - Risk factors: smoking, hypertension, hyperlipidemia, diabetes mellitus, cholesterol emboli
    - > Angina & may cause my cardial inforction
  - e.g. coronary thrombosis, cerebral thrombosis, peripheral artery

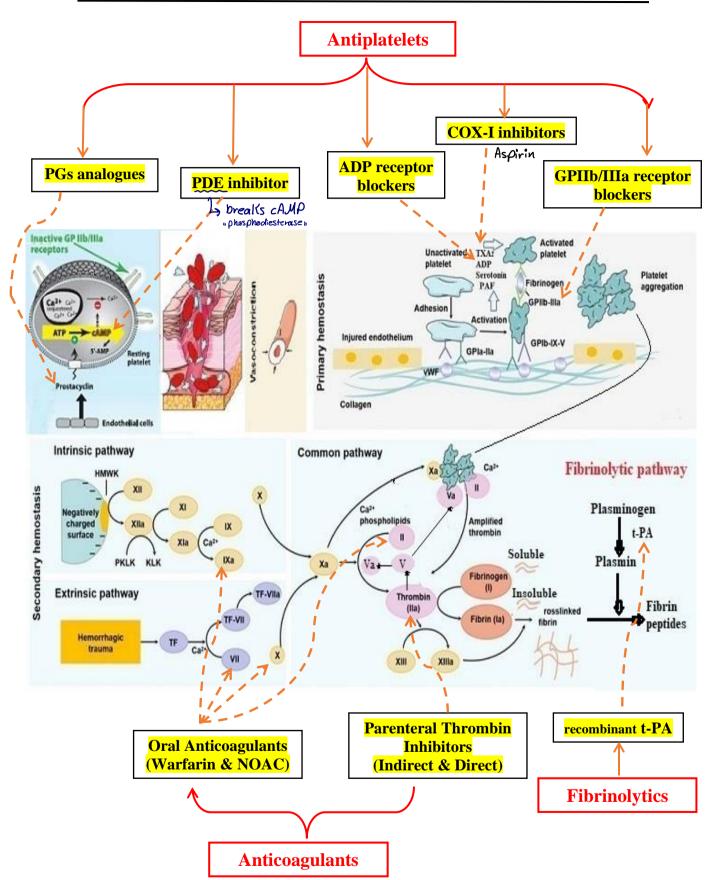
> Prevention of further clotting

- Treated mainly by antiplatelet drugs & fibrinolytics.
  - 21 breaks clot

2. **Red thrombus:** formed in veins due to venous stasis which triggers fibrin

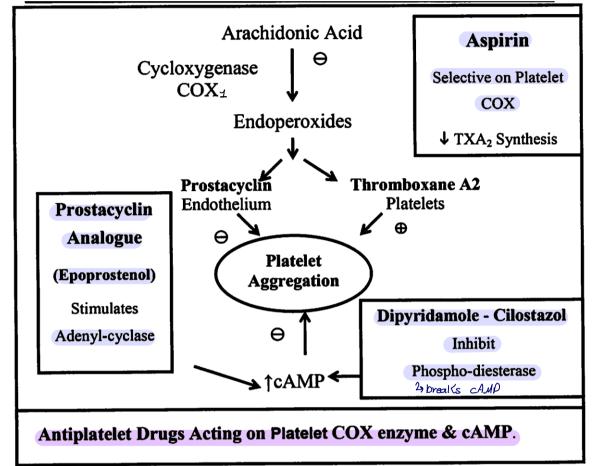
network formation through which red cells are enmeshed forming the red

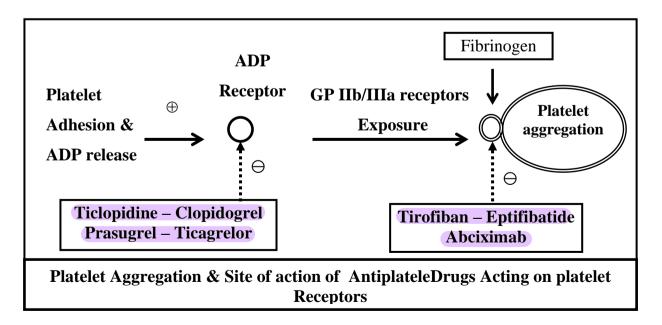

thrombus.


, uterus enlargment t veneus blood flow

- Risk factors: pregnancy, immediate post-childbirth period, use of oral

contraceptives or estrogen replacement therapy, high dose <sup>2</sup><sub>3</sub> formation of congulation here's corticosteroid therapy, immobilization (bone fracture, knee, hip, abdominal surgery, and catheters).


- It increases in size with time forming long tail. This tail can be detached easily forming emboli e.g. pulmonary embolism.
- Treated mainly by anticoagulants.(fibrinolytics may be used)






# ANTIPLATELET DRUGS

# (ANTITHROMBOTICS)





# Classification of antiplatelets according to mechanism of Action <u>I. Drugs Acting on Platelet COX Enzyme</u>

Acetylsalicylic acid (Aspirin)

- Prototype antithrombotic
- Low (infantile)-dose aspirin (**75 325 mg/day oral**): <u>inhibits platelet</u> <u>thromboxane A2 synthesis by inhibiting (irreversible acetylation) of</u> <u>COX-I enzyme</u>.
- Aspirin is the main antiplatelet drug used. (Clopidogrel or dipyridamole may be combined to it or given to the patients intolerant to it).
- Low dos aspirin is selective on platelets (why??)

# **II. Drugs Increasing cAMP**

#### **1.** PGI<sub>2</sub> analogue (epoprostenol)

- Stimulates adenyl cyclase  $\rightarrow \uparrow cAMP$ .
- Potent antiplatelet & vasodilator.
- Very short duration (minutes) → given by IVI. → thus call be used as prophylactic treatment
- Uses: hemodialysis-cardiopulmonary bypass- pulmonary hypertension

# 2. Dipyridamole & Cilostazol (oral)

- Inhibit phosphodiesterase  $\rightarrow \downarrow_{C}AMP$  breakdown  $\rightarrow \uparrow_{C}AMP$ .
- Vasodilator & antiplatelet.
- Dipyridamole is a weak antiplatelet →combined with warfarin or aspirin. (prefered to aspirin for combination with warfarin due to less bleeding).
- Cilostazol is used in intermittent claudication

III. Drugs acting on platelet Receptors 4 Pain in Lower body Part

2) As combining warfarin & aspirin may induce bleeding. So using ain in Lower body Dart dipyridamole & warfarin is safer muscles due to athenosclevosis T by exercise & stops when resting

- 1. Drugs inhibiting ADP receptors
  - They inhibit (**irreversibly**) the binding of ADP to its receptors →inhibit expression of fibrinogen receptors
  - Ticlopidine- clopidogrel prasugrel ticagrelor
  - Are given orally, maximum effect is achieved after 3-5 days (loading dose is required to achieve rapid maximal effect)

# 2. Drugs blocking GP IIb/IIIa (<u>Fib</u>rinogen) Receptor

- Tiro<u>fib</u>an, epti<u>fib</u>atide, abciximab (mono-clonal antibody)
- All are given IVI; short term therapy.
- They block platelet GP IIb/IIIa receptors (activation of this receptor complex is the "final common pathway" for platelet aggregation)
- Abciximab consists of monoclonal antibodies which bind to receptors.
- Epti<u>fib</u>atide, and tiro<u>fib</u>an are <u>analogues to delta chain of fibrinogen</u> which mediates binding of fibrinogen to GP IIb/IIIa receptors on platelets.

# Therapeutic uses of antiplatelet drugs (mainly in arterial thrombosis)

1. High risk of myocardial infarction (AMI): e.g., previous attack or angina.

- 2. Acute coronary syndrome. thrombosis in commany ordery courses angina
- 3. <u>Coronary bypasses grafting</u>, angioplasty & stent insertion (clopidogrel is routinely used). we make different blood route
- 4. Prosthetic heart valves: thrombo-embolism.
- 5. Transient ischemic attacks (TIAs)- thrombotic stroke.

# Adverse effects of antiplatelet drugs:

2) Stroke can be caused by either bleeding or thrombosis

A. Common: increased risk of bleeding

# **B.** Individual:

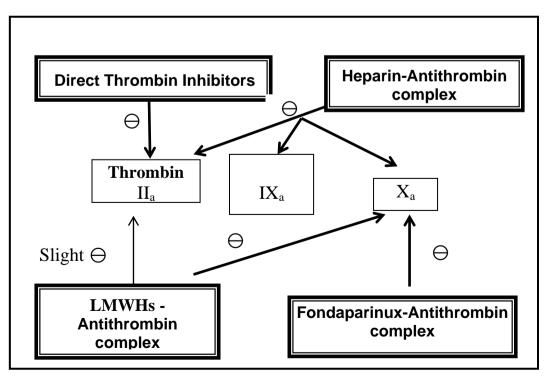
- **1.** Aspirin (oral once /day):
  - GIT: gastric irritation, bleeding ulcers.
  - Precipitating attack of bronchial asthma.
- 2. Epoprostenol (IVI): Flushing, headache, hypotension.
- 3. Dipyridamole (oral): Steal phenomena ( $\uparrow cAMP \rightarrow VD \rightarrow shift$

blood from atherosclerotic vessels to healthy vessels) -dizziness-

headache- GIT disturbance.

A) Thus blood supply to atherosclerotic vessel 14, causing ischemia

# 4. Cilostazol (oral):


- o Headache, dizziness GIT upset: dyspepsia, diarrhea
- $\circ$  VD  $\rightarrow$  Tachycardia, palpitations, peripheral edema.
- 5. Ticlopidine (oral): bone marrow depression  $\rightarrow$  neutropenia

- 6. Prasugrel: (oral)
  - Increased risk of bleeding (CI: in patients with history of TIA or stroke) bleeding stroke
- Clopidogrel (oral once /day) (preferred to ticlopidine; less risk of neutropenia)
  - Rash Gastric irritation- diarrhea.
  - Clopidogrel is a prodrug → avoid with PPIs e.g. omeprazole as it inhibits its activation in liver by CYP450
- 8. Ticagrelor: shortness of breath
- 9. Abciximab (IVI): thrombocytopenia, arrhythmia.

# ANTICOAGULANTS

- A. Parenteral Anticoagulants:
- **I. Indirect thrombin inhibitors**: Heparin low molecular weight heparins (LMWHs) fondaparinux.
- **II. Direct thrombin inhibitors**: Bivalirudin Argatroban.
- B. <u>Oral anticoagulants:</u> Warfarin New oral anticoagulants (NOAC).

# A.PARENTERAL ANTICOAGULANTS



Site of action of Indirect & Direct Thrombin Inhibitors