- Order the intermolecular forces(dipole-dipole, London dispersion, ionic and hydrogenbonding)from weakest to strongest
- 1- London dispersion , dipole-dipole , hydrogen-bonding , ionic
- 2- Dipole –dipole, London dispersion ,ionic and hydrogen bonding
- 3- hydrogen bonding ,dipole-dipole, London dispersion and ionic
- 4- dipole-dipole, ionic, London dispersion and hydrogen bonding
- 5- London dispersion, ionic, dipole-dipole and hydrogen bonding
 - For the galvanic cell reaction, expressed below using shorthand notation, what half-reaction occurs at the cathode?Zn_(s)|Zn²⁻_(aq)||Fe²⁻_(aq)|Fe_(s)
- $1-Zn_{(2)} \longrightarrow Zn^{2+}_{(aq)} + 2e^{-1}$

 $2 - \frac{Zn2+}{(aq)} + 2e^{-} \longrightarrow Zn_{(s)}$

 $3 - Fe^{2+}_{(aq)} + 2e^{-} \longrightarrow Fe_{(s)}$

$$4- \operatorname{Fe}_{(s)} \longrightarrow \operatorname{Fe}^{2+}_{(aq)} + 2e^{-}$$

Haelf-raction	E°(V)
$Cr^{3+}_{(aq)}+3e^{-} \longrightarrow Cr_{(s)}$	-0.74
$Cr^{3+}_{(aq)}+3e^{-} \longrightarrow Fe_{(s)}$	-0.440
$Cr^{3+}_{(aq)}+3e^{-} \longrightarrow Cr_{(s)}$	+0.771
$\operatorname{Sn}^{4+}_{(aq)} + 2e^{-} \longrightarrow \operatorname{Sn}^{2+}_{(aq)}$	+0.154

- Using the table above , the standard cell potential (E °cell) for the galvanic cell based on the reaction below is $3Sn {}^{4+}_{(aq)}+2Cr {}_{(s)} \longrightarrow 2Cr {}^{4+}_{(aq)}+3Sn {}^{2+}_{(aq)}$
 - 1. +2.53
 - 2. -1.02
 - 3. +0.89
 - 4. +1.94
 - 5. -0.59
- Calculate the work for the expansion of CO₂ from 1.0 to 2.9 liters aginst a pressure of 1.0 atm at constant temperature.
- 1. -1.9 liter atm
- 2. 1.9 liter atm
- 3. 2.9 liter atm

4.0

5. -2.9 liter atm

Find the value if the equilibriam constant (k) (at 500 C) for $N_{2(g)}$ +3H_{2(g)} K_p at 500 C is 1.5 *10 ⁻⁵ (R -0.0821 atm /Kmol-8,114 J/kmol)

 $2NH_{3(g)}$ the value for

1. 7.5*10⁻² 2. 1.3*10⁻² 3. 9.6*10⁻³ 4. 6.0*10⁻² 5. 2.5*10⁻²

For nitrous acid HNO₂, Ka= 4.0 *10⁻⁴. Calculate the PH of 0.68 M HNO₂ 1.1.78 2.0.17 3.3.57 4.12.22 5.non of the these

A substance contains 35.0 g nitrogen, 5.05 g hydrogen, and 60.0 g of oxygen , how many grams of hydrogen are there in a 156 g sample of this substance ? (Molar mass of N,H and O are 14,1 and 16 g/mol)

- 1. 15.7 g
- 2.5.05 g
- 3.30.9g
- 4. 7.87 g
- 5. 782 g

one molecular of a compound weight 2.13 *10⁻²²g .Its molar mass is

- 1. 20 g/ mol
- 2. 72 g/ mol
- 3. 150 g/ mol
- 4.128 g/ mol
- 5 190 g / mol

the normal boiling point of liquid X is less than that of Y, which is less than of Z, which of the following is the correct order of increasing vapor pressure of the three liquid at 57P 1. X<Y<Z

2. Y 3.X 4.Z<Y<X 5.Y<Z<X

Exactly 235.4 J will raise the temperate of 10.0 g of a metal from 25.0 $^{\circ}$ C to 60.0 $^{\circ}$ C . What is the specific beat capacity of the metal ?

1. 1.49 J/g _o C 2.13.1 J/g _oC 3. 0.673 J/g _oC 4.56.3 J/g _oC 5. Non of the these

Consider the reaction $H_2+I_2 \iff 2HI$ whose K=3.12 at a high temperature. If an equal amount of reactant gives the concentration of the product to be 0.50 M at equilibrium, determine the equilibrium concentration of the H_2 .

1. 1.3*10?1M 2.4.5*10⁻²M 3. 9.0 *10⁻²M 4.1.1 *10-1 M 5. 8.0*10⁻³ M

2.50 mol NOCL was place in a 2.50 L reaction vessel at 750 °C .After equilibrium was established, it was found that 28% of NOCL had dissociated according to the equation $2NOCL_{(g)} \longrightarrow 2NO_{(g)}+CL_{2(g)}$. Calculate the equilibrium constant ,K_p, for the reaction . 1. 1.17 2. 0.039 3.0.016 4. 26 5. 1.78

Order the following in increasing rate of effusion : F_2 , CL_2 , NO, NO_2 , CH_4 . 1. CH_4 < NO_2 <NO< F_2 < CL_2 2. CL_2 < F_2 < NO_2 < CH_4 <NO3. CL_2 < NO_2 < F_2 <NO< CH_4 4. CH_4 <NO< F_2 < NO_2 < CL_2 5. F_2 <NO< CL_2 < NO_2 < CH_4

A sample of hydrogen gas was collected over water at 21°C and 685 mmHg. The volume of the container was 9.40 L . Calculate the mass of $H_2(g)$ collected (Vapor pressure of water 18.6 mmHg at 21°C)

1.0.283 g 2.0.572 g 3.0.589g 4.0.683g 5.435 g