- Order the intermolecular forces(dipole-dipole, London dispersion, ionic and hydrogenbonding)from weakest to strongest
1- London dispersion, dipole-dipole ,hydrogen-bonding, ionic
2- Dipole -dipole, London dispersion, ionic and hydrogen bonding
3- hydrogen bonding, dipole-dipole, London dispersion and ionic
4- dipole-dipole, ionic, London dispersion and hydrogen bonding
5- London dispersion, ionic, dipole-dipole and hydrogen bonding
- For the galvanic cell reaction, expressed below using shorthand notation, what half-reaction occurs at the cathode? $\mathrm{Zn}_{(s)}\left|\mathrm{Zn}^{2-}{ }_{(\mathrm{aq})}\right|\left|\mathrm{Fe}^{2-}{ }_{(\mathrm{aq})}\right| \mathrm{Fe}_{(\mathrm{s})}$
$1-\mathrm{Zn}_{(2)} \longrightarrow \mathrm{Zn}^{2+}{ }_{(\text {aq) }}+2 \mathrm{e}^{-}$
2- ${ }^{\mathrm{Zn2+}}{ }_{(\mathrm{aq})}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Zn}_{(s)}$
$3-\mathrm{Fe}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Fe}_{(\mathrm{s})}$
$4-\mathrm{Fe}_{(\mathrm{s})} \longrightarrow \mathrm{Fe}^{2+}{ }_{(\text {aq) }}+2 \mathrm{e}^{-}$

Haelf-raction	$E^{\circ}(\mathrm{V})$
$\mathrm{Cr}^{3+}{ }_{\text {(aq) }}+3 \mathrm{Se}^{-} \longrightarrow \mathrm{Cr}_{(\mathrm{s})}$	-0.74
$\mathrm{Cr}^{3+}{ }_{\text {(q) })}+3 \mathrm{e}^{-} \longrightarrow \mathrm{Fe}_{(s)}$	-0.440
$\mathrm{Cr}^{3+}{ }_{(2 q)}+3 \mathrm{e}^{-} \longrightarrow \mathrm{Cr}_{(\mathrm{s})}$	+0.771
$\mathrm{Sn}^{4+}{ }_{\text {(aq) }}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Sn}^{2+}{ }_{\text {(aq) }}$	+0.154

- Using the table above, the standard cell potential ($\mathrm{E}^{\circ} \mathrm{cell}$) for the galvanic cell based on the reaction below is $3 \mathrm{Sn}^{4+}{ }_{(\text {aq })}+2 \mathrm{Cr}_{(\mathrm{s})} \longrightarrow 2 \mathrm{Cr}^{4+}{ }_{\text {(aq) }}+3 \mathrm{Sn}^{2+}{ }_{\text {(aq) }}$

1. +2.53
2. -1.02
3. +0.89
4. +1.94
5. -0.59

- Calculate the work for the expansion of CO_{2} from 1.0 to 2.9 liters aginst a pressure of 1.0 atm at constant temperature.

1. -1.9 liter atm
2. 1.9 liter atm
3. 2.9 liter atm
4.0
4. -2.9 liter atm

Find the value if the equilibriam constant (k) (at 500 C) for $\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})}$ K_{p} at 500 C is $1.5{ }^{*} 10^{-5}(\mathrm{R}-0.0821 \mathrm{~atm} / \mathrm{Kmol}-8,114 \mathrm{~J} / \mathrm{kmol})$

1. $7.5 * 10^{-2}$
2. $1.3^{*} 10^{-2}$
3. $9.6 * 10^{-3}$
4. $6.0 * 10^{-2}$
5. $2.5 * 10^{-2}$

For nitrous acid $\mathrm{HNO}_{2}, \mathrm{Ka}=4.0 * 10^{-4}$. Calculate the PH of 0.68 M HNO 2
1.1.78
2.0.17
3.3.57
4.12.22
5.non of the these

A substance contains 35.0 g nitrogen, 5.05 g hydrogen, and 60.0 g of oxygen , how many grams of hydrogen are there in a 156 g sample of this substance ? (Molar mass of N, H and O are 14,1 and 16 $\mathrm{g} / \mathrm{mol}$)
1.15 .7 g
2.5 .05 g
3.30 .9 g
4. 7.87 g
5.782 g
one molecular of a compound weight $2.13 * 10^{-22} \mathrm{~g}$. Its molar mass is

1. $20 \mathrm{~g} / \mathrm{mol}$
2. $72 \mathrm{~g} / \mathrm{mol}$
3. $150 \mathrm{~g} / \mathrm{mol}$
4. $128 \mathrm{~g} / \mathrm{mol}$
$5190 \mathrm{~g} / \mathrm{mol}$
the normal boiling point of liquid X is less than that of Y, which is less than of Z, which of the following is the correct order of increasing vapor pressure of the three liquid at 57P
5. $X<Y<Z$
6. Y
3.X
7. $\mathrm{Z}<\mathrm{Y}<\mathrm{X}$
8. $Y<Z<X$

Exactly 235.4 J will raise the temperate of 10.0 g of a metal from $25.0^{\circ} \mathrm{C}$ to $60.0^{\circ} \mathrm{C}$. What is the specific beat capacity of the metal ?

1. $1.49 \mathrm{~J} / \mathrm{g}$ 。 C
$2.13 .1 \mathrm{~J} / \mathrm{g}$ 。 C
2. $0.673 \mathrm{~J} / \mathrm{g}$ oC
$4.56 .3 \mathrm{~J} / \mathrm{g}$ oC
3. Non of the these

Consider the reaction $\mathrm{H}_{2} \mathrm{H}_{2} \longleftrightarrow 2 \mathrm{HI}$ whose $\mathrm{K}=3.12$ at a high temperature. If an equal amount of reactant gives the concentration of the product to be 0.50 M at equilibrium, determine the equilibrium concentration of the H_{2}.

1. 1.3*10? 1 M
2.4.5* $10^{-2} \mathrm{M}$
2. $9.0 * 10^{-2} \mathrm{M}$
4.1.1 * $10-1 \mathrm{M}$
3. $8.0^{*} 10^{-3} \mathrm{M}$
2.50 mol NOCL was place in a 2.50 L reaction vessel at $750^{\circ} \mathrm{C}$.After equilibrium was established, it was found that 28% of NOCL had dissociated according to the equation
$2 \mathrm{NOCL}_{(\mathrm{g})} \longrightarrow 2 \mathrm{NO}_{(\mathrm{g})}+\mathrm{CL}_{2(\mathrm{~g})}$. Calculate the equilibrium constant, K_{p}, for the reaction.
4. 1.17
5. 0.039
3.0.016
6. 26
7. 1.78

Order the following in increasing rate of effusion : $\mathrm{F}_{2}, \mathrm{CL}_{2}, \mathrm{NO}, \mathrm{NO}_{2}, \mathrm{CH}_{4}$.

1. $\mathrm{CH}_{4}<\mathrm{NO}_{2}<\mathrm{NO}<\mathrm{F}_{2}<\mathrm{CL}_{2}$
2. $\mathrm{CL}_{2}<\mathrm{F}_{2}<\mathrm{NO}_{2}<\mathrm{CH}_{4}<\mathrm{NO}$
3. $\mathrm{CL}_{2}<\mathrm{NO}_{2}<\mathrm{F}_{2}<\mathrm{NO}^{2}<\mathrm{CH}_{4}$
4. $\mathrm{CH}_{4}<\mathrm{NO}_{2}<\mathrm{F}_{2}<\mathrm{NO}_{2}<\mathrm{CL}_{2}$
5. $\mathrm{F}_{2}<\mathrm{NO}<\mathrm{CL}_{2}<\mathrm{NO}_{2}<\mathrm{CH}_{4}$

A sample of hydrogen gas was collected over water at $21^{\circ} \mathrm{C}$ and 685 mmHg . The volume of the container was 9.40 L . Calculate the mass of $\mathrm{H}_{2}(\mathrm{~g})$ collected (Vapor pressure of water 18.6 mmHg at $21^{\circ} \mathrm{C}$)
1.0 .283 g
2.0 .572 g
3.0.589g
4.0.683g
5.435 g

