

Cycloadditions: the Diels-Alder Reaction

The stereochemistry of the reactants is preserved in the product, i.e. a cisdienophile give cis substituents in the product, a trans-dienophile give trans substituents in the product, i.e.

Alkynes

- Alkynes are sp hybridized
- Linear - bond angle 180°
- 2σ and 2π bond (or 1 single and 1 triple)
- C \equiv C double bond $\sim 1.21 \AA$

Alkynes: Reactions

Most of the reactions discussed for alkenes also apply to alkynes, although the alkynes usually react slower.

There are a couple of differences.

Alkynes: Reactions

Bromination: the first bromine adds trans to the alkyne. It can be stopped at this by controlling the amount of Br_{2} present, but a second addition is possible.

ethyne

trans-1,2-dibromoethene

1,1,2,2 ttetrabromgethane

Alkynes: Reactions

Hydrogenation: ordinary Pt or Ni catalysts produce alkanes. However a special Pd catalyst called Lindlar's reagent causes only $1 \mathrm{H}_{2}$ in a syn addition to produce a cis-alkene

Alkynes: Reactions

Markovnikov's rule is followed for asymmetric alkynes, R-C =C-H

HX

2,2-dibromopropane

Alkynes: Reactions

Hydration: requires an additional mercury $\left(\mathrm{Hg}^{2+}\right)$ catalyst. The initial product, an enol, rearranges rapidly to form a ketone, i.e.
ustes.
structural isomers

Alkynes: Acidity

The alkyne proton is quite acidic for a hydrocarbon with a pK_{a} of ~ 25. This means it can be removed by strong bases such as sodium amide (made by adding metallic sodium to ammonia).

this hydrogen is weakly acidic

Alkynes: Acidity

The reason for the high acidity is the hybridization of the C atom in an alkyne. As the hybridization becomes more s like the acidity increases.

This is very import as it is one of the few ways to generate a carbon nucleophile!

