Transport of O_{2} and CO_{2} by the blood

Dr. Waleed R. Ezzat

Lecture Objectives:

1. State the relationship between the partial pressure of oxygen in the blood and the amount of oxygen physically dissolved in the blood.
2. Define oxygen partial pressure (tension), oxygen content, and percent hemoglobin saturation as they pertain to blood.
3. Describe and draw an oxyhemoglobin dissociation curve (hemoglobin oxygen equilibrium curve) showing the relationships between oxygen partial pressure, hemoglobin saturation, and blood oxygen content.
4. On the same axes, draw the relationship between PO_{2} and dissolved plasma O_{2} content (Henry's Law). Compare the relative amounts of O_{2} carried bound to hemoglobin with that carried in the dissolved form.
5. Describe how the shape of the oxyhemoglobin dissociation curve influences the uptake and delivery of oxygen.
6. Define P50.
7. Show how the oxyhemoglobin dissociation curve is affected by changes in blood temperature, $\mathrm{pH}, \mathrm{PCO} 2$, and $2,3-\mathrm{DPG}$, and describe a situation where such changes have important physiological consequences.
8. Describe how anemia and carbon monoxide poisoning affect the shape of the oxyhemoglobin dissociation curve, PaO_{2}, and SaO_{2}.
9. List the forms in which carbon dioxide is carried in the blood. Identify the percentage of total CO_{2} transported as each form.
10. Describe the importance of the chloride shift in the transport of CO_{2} by the blood.
11. Identify the enzyme that is essential to normal carbon dioxide transport by the blood and its location.
12. Draw the carbon dioxide dissociation curves for oxy- and deoxyhemoglobin.
13. Describe the interplay between CO_{2} and O 2 binding on hemoglobin that causes the Haldane effect.

General Notes:

- If the diffusion coefficient for oxygen is considered as 1 , then relative diffusion coefficient for CO_{2} is 20.3 .
- Normally, the major limitation to the movement of gases in tissues is the diffusion rate through tissue water instead of through the cell membranes (including the alveolocapillary membrane), as both oxygen and CO_{2} are highly lipid soluble.
- Hemoglobin (Hb) in the RBC allows blood to transport 30 to 100 times as much oxygen as could be transported in the form of dissolved oxygen in water ($230 \mathrm{ml} \mathrm{O}_{2} / \mathrm{min}$ at rest).
- PO_{2} of the alveolar capillaries is about 104 mmHg . However, PO_{2} in the left ventricular blood is about 95 mmHg due to venous admixture of blood.
- Normally, 97% of oxygen transported from the lungs to the tissues is carried combined with the Hb in the RBCs. The remaining 3% is transported in the dissolved state in the water.

The Hemoglobin:

- Hemoglobin is a protein made up of 4 subunits, each of which contains a heme moiety attached to a polypeptide chain. Each heme has one atom of ferrous iron.
- In deoxyhemoglobin, the globin units are said to be in a tense (T) configuration \rightarrow reduced affinity to O_{2} molecules.
- When oxygen is first bound, the bonds holding the globin units are released \rightarrow relaxed (R) configuration \rightarrow exposes more O_{2} binding sites $\rightarrow \uparrow \mathrm{O}_{2}$ affinity.
- Hb has 4 functions;
- Facilitates oxygen transport
- Facilitates CO_{2} transport
- Acts as a buffer to maintain pH
- Transports NO that promotes vasodilation

Transport of Oxygen in The Blood

Oxygen-Hemoglobin Dissociation Curve:

This curve demonstrates the relationship between the percentage of Hb saturation with oxygen and PO_{2}. The curve is sigmoid in shape due to T-R interconversion. The curve shows the following facts;

- The usual oxygen saturation of systemic arterial blood is 97% and that of venous blood is about 75%.
- Each 100 ml of blood carries 20 ml of oxygen at full (100%) saturation considering Hb concentration as $15 \mathrm{~g} / 100 \mathrm{ml}$ of blood.
- Arterial blood carries $19.4 \mathrm{ml} \mathrm{O}_{2} / 100 \mathrm{ml}$ of blood and $14.4 \mathrm{ml} \mathrm{O}_{2} / 100 \mathrm{ml}$ of venous blood. Therefore, 5 ml of O_{2} are transported from the lungs to the tissues by each 100 ml of blood.
- Hb can buffer marked oxygen concentration changes in atmosphere. Oxygen delivery is almost the same between the range of $60-$ over 100 mmHg arterial PO_{2}.

Factors that shift the Oxygen-Hemoglobin Dissociation Curve:

Note:
P_{50} is a convenient index to study the shift. The P_{50} is the level of PO_{2} where Hb is half saturated with O_{2}. The higher the P_{50}, the lower the affinity of Hb for oxygen. The normal P_{50} for arterial blood is 26 to 28 mmHg

1. Effect of CO_{2} and Hydrogen ion (Bohr effect):

Bohr effect = the decrease in O_{2} affinity of Hb when pH of blood falls.
$\uparrow \mathrm{CO}_{2}$ and $\uparrow \mathrm{H}^{+} \rightarrow$ shift the curve to the right $\rightarrow \uparrow$ oxygen release from the blood in the tissues.

Bohr effect causes left shift of the curve in the lungs $\rightarrow \uparrow$ oxygenation of the pulmonary blood.

Factors that shift the Oxygen-Hemoglobin Dissociation Curve:

2. Effect of 2,3 -diphosphoglycerate (DPG):

- DPG is very plentiful in red cells because RBC lack mitochondria. It is a product of glycolysis before forming pyrovate. When 2,3-BPG molecule is then converted to 3-PG, ATP is generated.
- When 2,3-BPG binds to deoxyhemoglobin, it acts to stabilize the low oxygen affinity state (T state) conformation, making it harder for oxygen to bind hemoglobin and more likely to be released to adjacent tissues. 2,3-BPG acts as such as a part of a feedback loop that can help prevent tissue hypoxia in conditions where it is most likely to occur.
- It's important to note that the behavior of myoglobin doesn't work in the same way, as 2,3BPG has no effect on it.
- In pregnancy, there is a 30\% increase in intracellular 2,3-BPG. This lowers the maternal hemoglobin affinity for oxygen, and therefore allows more oxygen to be offloaded to the fetus in the maternal uterine arteries. The fetal hemoglobin (HbF) has a low sensitivity to 2,3-BPG, so HbF has a higher affinity for oxygen. Therefore although the PO_{2} in the uterine arteries is low, the fetal umbilical arteries (which are deoxygenated) can still get oxygenated from them.

Factors that shift the Oxygen-Hemoglobin Dissociation Curve:

2. Effect of 2,3-diphosphoglycerate (DPG) cont.:

- Thyroid hormones, Growth hormone, and androgens increase the concentration of DPG and P50. Ascent to high altitude triggers a substantial rise in DPG concentrations in RBCs. DPG also increases in anemia and in diseases associated with chronic hypoxia (e.g. airway obstruction or congestive heart failure), DPG keeps the oxygen-dissociation curve shifted slightly to the right all the time.
- In hypoxia, the increased level of DPG $\rightarrow \uparrow$ oxygen release. This mechanism adapts for hypoxia caused by poor tissue blood flow and hypoxia due to living in high altitude.

3. Effect of exercise:

Several factors cause the curve to shift to the right in exercise. These are \uparrow CO_{2} release by tissues, acid formation, \uparrow DPG production, and increased muscular temperature ($2-3^{\circ} \mathrm{C}$).

The Myoglobin:

A protein found in skeletal muscle. It resembles Hb but binds 1 rather than 4 mol of oxygen per mole.
Its dissociation curve is a rectangular hyperbolic rather than a sigmoid curve and placed to the left of both fetal and adult oxygen-hemoglobin dissociation curves when plotted together.

As myoglobin has a higher affinity for oxygen it extracts oxygen from the hemoglobin and deliver it later to the skeletal muscle when O_{2} is cut off during skeletal muscle contraction.

Oxygen saturation curves

Test Question:

A 42-year-old man got an accident and suffered lacerations of his liver and spleen. His hemoglobin concentration was $7 \mathrm{~g} / \mathrm{dl}$, and he was given a 2-unit transfusion of packed red blood cells. Which of the following changes would you expect to see as a result of the transfusion?
A. Decreased arterial oxygen concentration
B. Increased arterial PO_{2}
C. Increased oxygen concentration of mixed venous blood
D. Increased arterial oxygen saturation
E. Increased tissue oxygen consumption

Transport of CO_{2} in The Blood

Introduction:

- The major difference between diffusion of CO_{2} and of O_{2} is that CO_{2} can diffuse about 20 times as rapidly as O_{2}.
- The pressure differences required to cause CO_{2} diffusion are far less than the pressure differences required to cause O_{2} diffusion. The CO_{2} pressure gradients in the body are approximately the following:

1. Only a 1 mmHg pressure gradient at the cellular level (Intracellular $\mathrm{PCO}_{2}=46 \mathrm{mmHg}$; interstitial and venous blood $\mathrm{PCO}_{2}=45 \mathrm{mmHg}$).
2. Only a 5 mmHg pressure gradient causes all the required CO_{2} diffusion out of the pulmonary capillaries
 into the alveoli (Pulmonary arterial $\mathrm{PCO}_{2}=45 \mathrm{mmHg}$; PCO_{2} of the alveolar air $=40 \mathrm{mmHg}$).

Introduction (cont.):

- A decrease in tissue perfusion (as in hypovolemic shock) increases peripheral tissue PCO_{2} from the normal value of 45 mmHg to elevated levels and vice versa.
- An increase in tissue metabolic rate greatly elevates the interstitial fluid PCO_{2} at all rates of blood flow, whereas decreasing the metabolism causes the interstitial fluid PCO_{2} to fall.
- Under normal resting conditions, an average of 4 ml of CO_{2} is transported from the tissues to the lungs in each 100 ml of blood.

Methods of CO_{2} transport:

Upon entering the tissue capillaries, the CO_{2} is transported in three physical and chemical forms. These forms are;

1. Transport of CO_{2} in the dissolved state (7\%)
2. Transport of CO_{2} in the form of bicarbonate ion (70\%)
3. Transport of CO_{2} in combination with hemoglobin and plasma proteins (23\%)

Transport of CO_{2} in the dissolved state:

The amount of CO_{2} dissolved in the fluid of the venous blood at 45 mmHg is about $2.7 \mathrm{ml} / \mathrm{dl}$. As 2.4 m / dl of CO_{2} is dissolved in arterial blood, therefore, only about $0.3 \mathrm{ml} / \mathrm{dl}$ of CO_{2} is transported in the dissolved form by each 100 milliliters of blood flow. This is about 7% of all the CO_{2} normally transported.

Transport of CO_{2} in the form of bicarbonate ion:

- The dissolved CO_{2} in the RBC reacts with water to form carbonic acid. This reaction is catalyzed by the enzyme carbonic anhydrase.
- This phenomenon allows tremendous amounts of CO_{2} to react with the red blood cell water even before the blood leaves the tissue capillaries.
- Carbonic acid further dissociates into hydrogen and bicarbonate ions (H^{+}and $\mathrm{HCO}_{3}{ }^{-}$). Most of the H^{+}ions then combine with the hemoglobin.
- Many of the $\mathrm{HCO}_{3}{ }^{-}$ions diffuse from the red blood cells into the plasma, while Cl^{-}ions diffuse into the red
 blood cells to take their place. This phenomenon is

[^0] called the chloride shift.

Transport of CO_{2} in combination with hemoglobin and plasma proteins:

- CO_{2} reacts directly, with a loose bond, with amine radicals of the hemoglobin (Hb) molecule to form the compound carbaminohemoglobin $\left(\mathrm{CO}_{2} \mathrm{Hb}\right)$.
- A small amount of CO_{2} also reacts in the same way with the plasma proteins in the tissue capillaries. However, this reaction is less significant than Hb transport of CO_{2}.
- The contribution of the carbaminohemoglobin and plasma proteins in the transport of CO_{2} to the lungs is just above 20% of the total quantity transported.

Carbon dioxide dissociation curve:

Note:

1. The normal blood PCO_{2} ranges between a narrow range of 40 mmHg in arterial blood and 45 mmHg in venous blood.
2. The concentration of CO_{2} rises to about 52 volumes percent as the blood passes through the tissues and falls to about 48 volumes percent as it passes through the lungs.
3. Only 4 volumes percent of the CO_{2} concentration is exchanged during normal transport of CO_{2} from the tissues to the lungs.

The Haldane Effect:

- Binding of oxygen with hemoglobin tends to displace CO_{2} from the blood.
- The combination of O_{2} with hemoglobin in the lungs causes the hemoglobin to become a stronger acid.
- The more highly acidic hemoglobin has less tendency to combine with CO_{2} to form carbaminohemoglobin, thus displacing much of the CO_{2} that is present in the carbamino form from the blood.
- Also the increased acidity of the hemoglobin \rightarrow 个release of H^{+}ions $\rightarrow \uparrow$ binding of H^{+}with bicarbonate ions to form $\mathrm{H}_{2} \mathrm{CO}_{3} \rightarrow$ dissociation of $\mathrm{H}_{2} \mathrm{CO}_{3}$ into water and $\mathrm{CO}_{2} \rightarrow$ \uparrow release of CO_{2} from the blood into the alveoli.
- The Haldane effect approximately doubles the amount of

Portions of the carbon dioxide dissociation curve when the PO_{2} is 100 mm Hg or 40 mm Hg . The arrow represents the Haldane effect on the transport of carbon dioxide.

Test Question:

Q. Most of the carbon dioxide transported in the arterial blood is in the form of?
A. Dissolved
B. Bicarbonate
C. Attached to hemoglobin
D. Carbamino compounds
E. Carbonic acid

[^0]: Transport of carbon dioxide in the blood

