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Lecture Objectives:

Define diffusion and describe the factors that affect the rate of diffusion
of substances across cell membranes.

Describe facilitated diffusion.
Compare and contrast facilitated diffusion and simple diffusion.

Explain characteristics of carrier mediate transport, (specificity,
saturation, and competition).

Define and explain primary active transport, using the Na*-K* pump, and
proton pump as examples of primary active transport.

Discuss the characteristics of primary active transport.
Define and explain the mechanism of secondary active transport.

Explain how glucose is transported across epithelial cells in the kidney
and the gut by secondary active transport.

Define vesicular transport, transcellular transport, and their functions.
Define osmosis and explain how osmosis takes place.

Define osmotic pressure and explain the determinants of osmotic
pressure.

Understand how to calculate osmotic pressure.

Describe water movement across the plasma membrane and explain the
role of water channels.
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It is the random movement of substances molecules, ions, _wug;
or suspended colloid particles either through membrane e
openings or through intermolecular spaces in the e

membrane, or in combination with a carrier protein. ... 2055
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Diffusion through cell membrane is either simple or = seeemoen
facilitated.

Simple diffusion is passive process (no energy is required)

by which particles in solution flow down a concentration ..
gradient. Diffusion rate is determined by the (1) P
concentration gradient, (2) electrical gradient, and by (3)
membrane permeability. It is the only form of transport that -,
istot carrier-mediated. ““i“*:%

" Lipid-soluble particles can diffuse easily, their permeablllty iS ou

" proportional to (1) their lipid solubility and (2) the size of 7\
the particle. omn whe T

2/The selective rapid passage of water through the membrane

is achieved through aqua orins”wh%’ch are channels used for
the passage of water.» ¢~
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A graph of solute transport across a plasma membrane by simple diffusion



Diffusion (cont.)
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o Permeablllty describes the ease with which a solute
diffuses through a membrane. It depends on the - |
characteristics of the solute and the membrane. =z

* The permeability increases if: =
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- 1. Solute is lipid soluble " =i o
2. The radius of the solute is smaII S
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3. The membrane thickness is smaII”* EWR (g o
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* Uncharged or nonpolar molecules such as 0,, N CO,,
fatty acids, and alcohols can diffuse throu%O 2I|p|é
. W_@membrane because of their high lipid solubility. .

3, Water-soluble ions less than 0.8 nm in diameter -+~

j"“dlffuse through protein pore channels. Their

4t permeability is proportional to their size, shape and
charge; as well as the number of channels tnrough
whic they can diffuse.
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Diffusion (cont.)

* Some lipid-insoluble molecules (such as urea) can use less
selective water channels to pass. e o
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o ion and svngrlg them through the membrane in this form /%
down an electrochemical gradient (e.g. glucose and amino” »
acids). It does not require metabolic energy (i.e. passive) and is

e

_<frmore rapid than simple diffusion.
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YT As facilitated diffusion is carrier-mediated, therefore, it displays ™. g
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three important characteristics that determine the kind and g >
amount of material that can be transferred across the 7
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membrane: s'tereo,gpeaflaty saturation, and competition.
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Diffusion (cont.)
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...2 ASaturation: A limited number of carrier binding sites are
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This means that initially facilitated diffusion depends on the™
concentration gradient until all binding sites are filled

(saturated); at this point, the rate of diffusion can no longer rise
with increasing the concentration gradient. — P
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Facilitated
diffusion

Rate of diffusion

Concentration of substance

Effect of concentration of a substance on the rate of diffusion
through a membrane by simple diffusion and facilitated diffusion.
This graph shows that facilitated diffusion approaches a maximum
rate, called the V...
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It is the movement of molecules or ions by

~a cell membrane (or intracellular
membranes) uphill agamst a concentration
or electrical gradient. . .- oo
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lons actively transported are Na*, K*, CaZ*,
.iron, HY,’I5and urate ions. - ot st~
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B Types of active
transport

Primary active
transport

4 Secondary active
transport
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Ig‘ﬁ‘“‘rﬁéi?y active transport

- *‘i«: i Uses the hydrolysis of ATP as source of energy. lons transported
<~ by this mechanism are Na*, K¥, Ca#*,H*, CI-, and few other ions.
| Examples are;  «

Na'- K' pump (Na*- K* ATPase) is a clear example of this mechaql§m.
c<~;«‘@Both Na* and K* are transported against their electrochemical ™ >~

1 ;;: :!, gradlents Each cycle of the pump uses 1 molecule of ATP to remove

3 ", 3 Na*ions from the ICF'and transport 2 K* ions into the ICF. The Na*-

RSN 22 v K* pump controls cell volume and creates electrical potential across

Y

] j,f the cell membrane as it pumps. oF

3&:’ S RS B S"\ Dt
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L g»‘” This pump is inhibited by‘alg&talls a drug used in the treatment of
;; 2 F _heart failure. Also this pump stops funct|on|ng if no Na*, K*, or ATP is
" available. i

lsa d"l.-ls

»"ay:;‘;& B. Ca2+ pump on the'sarcoplasmic reticulum (SR) of‘/muscle cells, which
So¥

%,\,f\i umol/L.
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H*-K* ATPase or proton pump. This pump is found in (1) the gastric

3 i, 7 glands of the stomach and in (2) the late distal tubules and cortical
@«A*"gﬁg;‘ »#% collecting ducts of the kidneys.
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geé’”‘ondary active transport’ <w

w-——.-

e Metabolic energy is not provided directly, but indirectly
from the Na* gradient that is maintained across cell
membranes (potential energy).

* Two or more solutes are coupled to the carrier protein;
one of the solutes (Na*) is transported downhill and =%
provides the energy for the uphill transport of the other
solute(s). Thus, inhibition of Na*-K* pump eventually
inhibits secondary active transport.

e |f Na* ions pull other substances along with them while
diffusing to the interior (solutes move in the same <=
direction), the phenomenon is called co-transport. Glucose
and many amino acids are transported by this mechanism
(such as in intestinal epithelial cells and in the renal

proximal tubules of the kidney).
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Secondary active transport (cont.)

* Other form of secondary active transport is the counter-
transport or exchange phenomenon. Here Na* ions diffuse
in replacement for intracellularisubstances that must be
transported to the outside.

e Two counter-transport mechanisms are especially
important; they are:

333 ong iy

"7 The Na*-Ca?* exchanger (responsible for the removal of

calcium from the cytoplasm of myocardial cells)

ware% TheNa*-H* counter-transport. This latter mechanism is

responsible for the removal of H* ions produced by
cellular metabolism to the ECF. The same mechanism is
also responsible for the reabsorption of bicarbonate
ions in the proximal tubule of the kidney.
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Vesicular transport

This mechanism is applied for the'transport of large polar molecules

~ or even'multimolecular materials that must leave or'enter the cell-
such as during secretion of protein hormones by endocrine cells, or
during ingestion of invading bacteria by white blood cells.

Vesicular transport requires energy expenditure by the cell, so itis an
active method of membrane transport. Energy is needed to

accomplish vesicle formation and vesicle movement within the cell.
~_ E;ri:
Vesicular transport includes endocytosis and exocytosis.

3 R Sy Bt R oo SO PD
gea 3) (A=)

- A. Inendocytosis the material to be transported first binds to a
iy I receptor and then the receptor-substance complex is surrounded
x> by the plasma membrane substance forming endocytic vesicle to

be ingested by endocytosis. Endocytosis is of three types;

- 1."Phagocytosis (cell eating), for bacteria, dead tissue, and bits of
~ material. Few specialized cells (such as WBC) are capable of
phagocytosis. A lysosome fused with the membrane of the
internalized vesicle releases its hydrolytic enzymes into the
vesicle, breaking down the engulfed material into reusable raw
ingredients.
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Vesicular transport (cont.)

L EEY AP SN e—

(e 5o 2. Receptor-mediated endocytosis. is a highly selective process that
W= == enables cells toiimport specific large molecules that it needs from
! its environment. Iron, cholesterol, vitamin B12, and the hormone
insulin are important examples.
(o) Fepfteth 63 fse?

jf?? Pinocytosis (cell drinking), the ingested substances are in solution
" .aew=s and cannot be seen under the microscope. Pinocytosis provides a
Fr-;m* ;N;“(_“> €ck
way to retrieve extra plasma membrane that has been added to

the cell surface during exocytosis.

Qussyy

B. In exocytosis, intracellular material is trapped within vesicles, the
vesicles fuse with the cell membrane and release the content to the
ECF. Hormones, digestive enzymes, and synaptic transmitters are
examples of materials transported by such mechanism.

Exocytosis enables the cell to add specific components to the
membrane, such as selected carriers, channels, or receptors,
depending on the cell’s needs. Exocytosis is a process that requires

2+
E;llﬂmuﬂ ip P35 <Y Endu@m-i a n d e n e rgy.
Codos— &ns\

swee . NOtes: Exocytosis- endocyt05|s coupling maintains the surface area of the
S gt cxioBracsten| o cell at its normal size.

CRIER Flu viruses and HIV, the virus that causes AIDS, gain entry to cells
via receptor-mediated endocytosis.
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It is the net passive flow of water across a
selectively permeable membrane down an
osmotic pressure gradient.

The driving force for movement of water is the
same as for any other diffusing molecule, i.e. from
a region of high water concentration to one that
has a lower water concentration.

It is important to recognize, however, that adding
a solute to pure water in effect decreases the
water concentration.

In general, adding one molecule of a solute
displaces one molecule of water.

Therefore, water flows from pure water to salty
solution (i.e. water moves by osmosis to the area
of higher solute concentration). . . .. ..o

= o5 Grdia 36
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Osmosis (cont.)

] of a solution is a measure of the tendency for
water to move into that solution. It is equal to the hydrostatic pressure
needed to stop osmosis.

It is determined by the number of particles in a solution per unit
volume of fluid (i.e. molar concentration). The osmotic pressure

increases when the solute concentration increases.
e The higher the osmotic pressure of a solution, the greater the water

flow into it.
e The Osmole of a substance = 1 gram molecular weight of
undissociated solute af tflat substance. o
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== s Osmolarity = concentration X number of dissociable particles =
Gd
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L2eme  mOsm/L = mmol/L X number of particles/mole
#of Tasd ot

* The =the number of osmoles per kilogram of water. The
normal osmolality of the extracellular and intracellular fluids is about

300 milliosmoles per a kilogram of water.

The average osmotic pressure of the body fluids is about 5500 mmHg,
since one milliosmole per liter is equivalent to 19.3 mmHg osmotic
pressure.

e The Osn =the number of osmoles per liter of solution =
osmolality for dilute solution, such as those in the body.



