

Molecular Biology

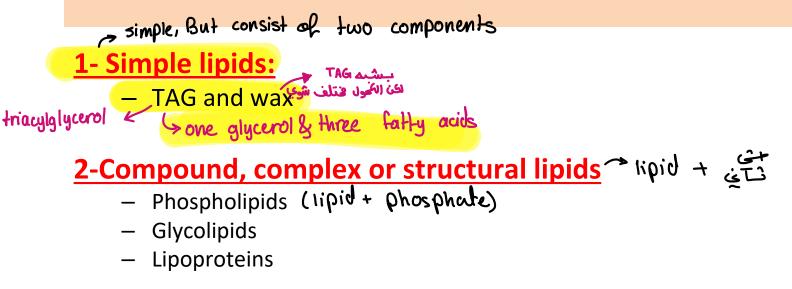
Lipids of biological importance-1

Ahmed Salem, MBBCH, MSc, PhD, FRCR asalem@hu.edu.jo

Majority of sides: Dr. Walaa Bayoumie El Gazzar

Why study lipids (importance)

The definition of the second source of the second second


- The fat-soluble vitamins and the essential fatty acids in foods
- Lipids are found primarily in three compartments Proteins Lipia in the body:
 - Plasma
 - Adipose tissue
 - Biological membranes

- **Definition:** Lipids are organic substances
 - Which are related to fatty acids

- carb. were organic substances
- They are water insoluble (non-polar, hydrophobic) but soluble in fat solvents as alcohols, chloroform, benzene, acetone, ethers...etc
- Lipids are formed mainly of <u>alcohol</u> and <u>fatty acids</u> combined together by <u>ester linkage</u>

Classification of lipids

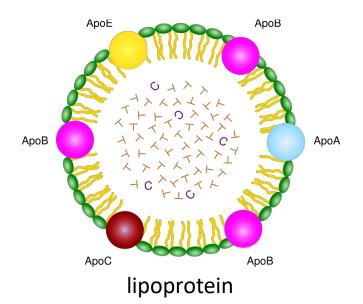
<u>عاممين 3-Derived Lipids وليت 3-Derived Lipids واليت </u>

For example: fatty acids , glycerof

4-Substances associated with lipids

- Steroid hormones, lipid soluble vitamins

Classification of lipids

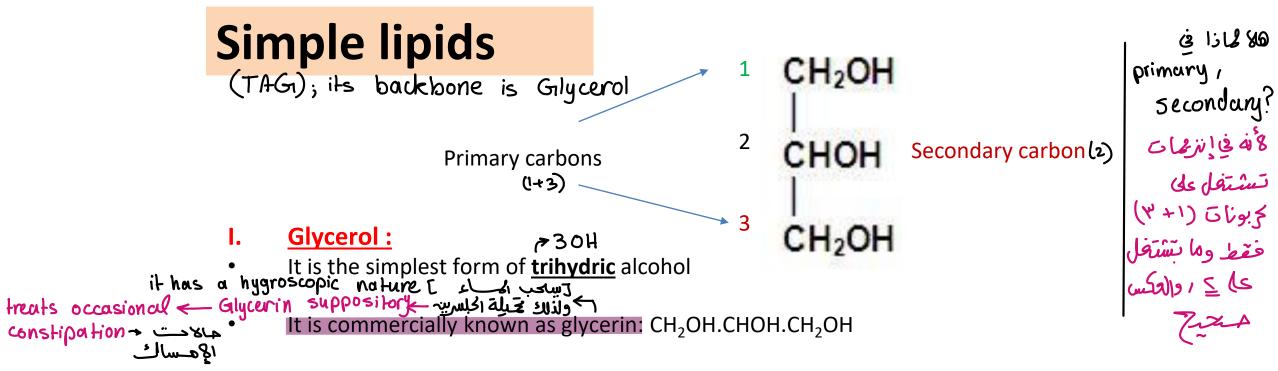

<u>1- Simple lipids:</u>

- These are **esters** of alcohols with fatty acids
- According to alcohol they are sub classified into: المحل يو روابط, وكل دابله
 Iniccylglycerols: these are esters of glycerol with 3 fatty acids
 Iniccylglycerols: these are esterified to glycerol they loose their negative charge, and hence the name neutral fats > another name for TAG
 alcohol (glycrol) + 3 fafty acids
 - <u>Waxes</u>: these are esters of <u>monohydric</u> alcohols higher than glycerol with one fatty acid <u>for many C /only one of</u> the fatty acid

Vegetable oil: triacylglycerols (92–98%), polar lipids (phospholipids and galactolipids), monoacylglycerols, diacylglycerols, and galactolipids), monoacylglycerols, diacylglycerols, diacylglycerols,

2-Compound, complex or structural lipids:

- They are formed of simple lipids in addition to other substances or groups:
 - Phosphate \rightarrow phospholipids
 - Carbohydrates \rightarrow Glycolipids
 - Proteins \rightarrow lipoprotein

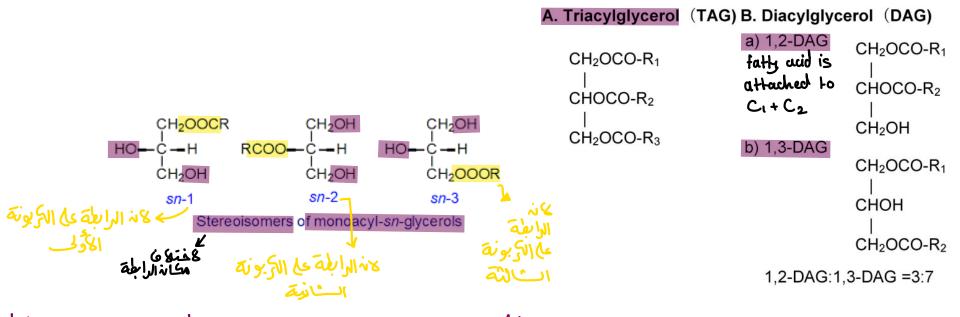


3-Derived Lipids:

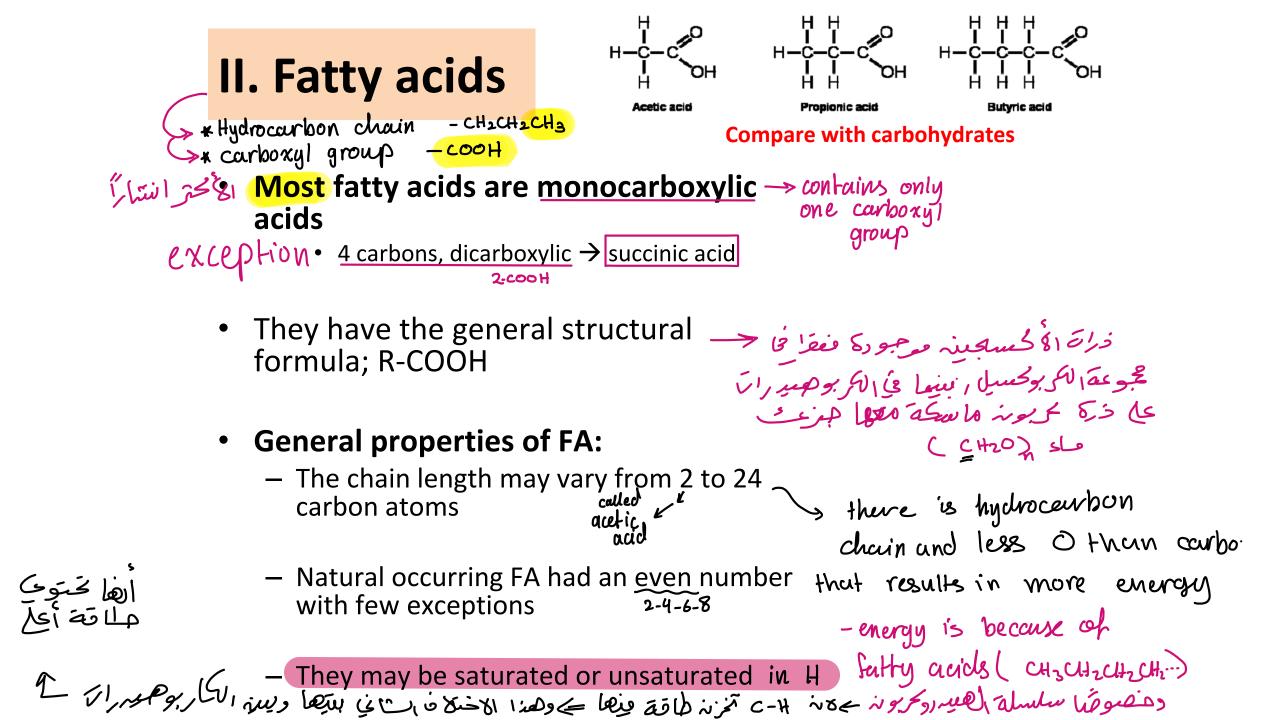
- These types of lipids are derived from simple & compound lipids
 - Obtained by the hydrolysis of the above groups → fatty acids. all / or glycerol all * in fact, glycerol is both lipid + carbo derived

<u>4-Substances associated with lipids:</u>

- These are substances present associated with lipids in nature and related to them in properties and metabolism, as:
 - fat soluble vitamins (A, D, E & K)
 - sterols as cholesterol and provitamins as carotenes


- Glycerol is the main component of neutral fats
- Since the glycerol contains three hydroxyl groups, it has the ability to combine with three <u>FA</u> through an **ester bond**.

(sfatty acids might be the same, or different


- These FA may be <u>the same to give simple triacylglycerols (TAG)</u> or <u>different to give</u> <u>mixed triacylglycerols</u>.
- The most common FAs which may enter in the structure of neutral fats are palmitic, stearic and/or oleic acids.

*acyl → fatty acid

- Glycerol can be esterified with:
 - One FAs \rightarrow monoacylglycerol
 - Two FAs \rightarrow diacylglycerol
 - Three FAs \rightarrow triacylglycerol

كلى جزئ ال الما المتوى على 30H روك لا تظهر على التربونة الحد على الرابطة الاسترية

Classification of Fatty acids:

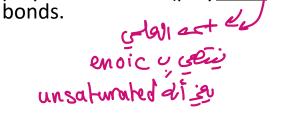
There are different methods for classification of FA depending on:

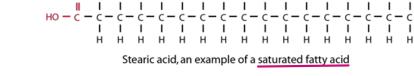
1- The total number of carbon atoms

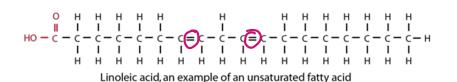
 Even chain: Most of the naturally occurring lipids contain even chain FA. They have carbon atoms 2, 4, 6 and similar series

> وكل ما تطول ال chains تقل ال بانانانان بانان

old chain: They are present in milk and microbial cell wall. They have carbon atoms 3, 5, 7. etc.


الأرماح مصية

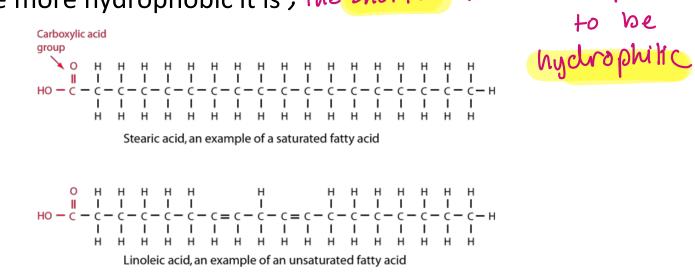

even chain


- 2- Length of hydrocarbon chain: in fatty and
 - Short chain FA: with 2 to 6 carbon atoms
 - Medium chain FA: with 8 to 14 carbon atoms.
 - Long chain FA: with 16 to 22 carbon atoms.
- Very long chain FA: with more than 24 carbon atoms. ها اللي إن بستكل عام همة insoluble ولك في المستثنادات, حسط اللحليك في علي في ما في الملا كانه مكون عن حك خصط

3- Nature of hydrocarbon chain:

- Saturated FA (SFA): without any double bond (suffix: <u>anoic</u>)
- fatty acid anoi, jai anoic jetal abi jai saturatza
- Unsaturated FA (USFA): which may be subclassified into:
 - mono-unsaturated (mono<u>enoic</u> or monoethenoid) containing one double bond or
 - poly-unsaturated (poly<u>enoic</u> or polyethenoid) containing 2 or more double bonds.

exception


Branched FA: e.g. isovaleric acid
 Hydroxy FA: e.g. cerebronic acid (brain lipid) HO₂C,

Gentra OH

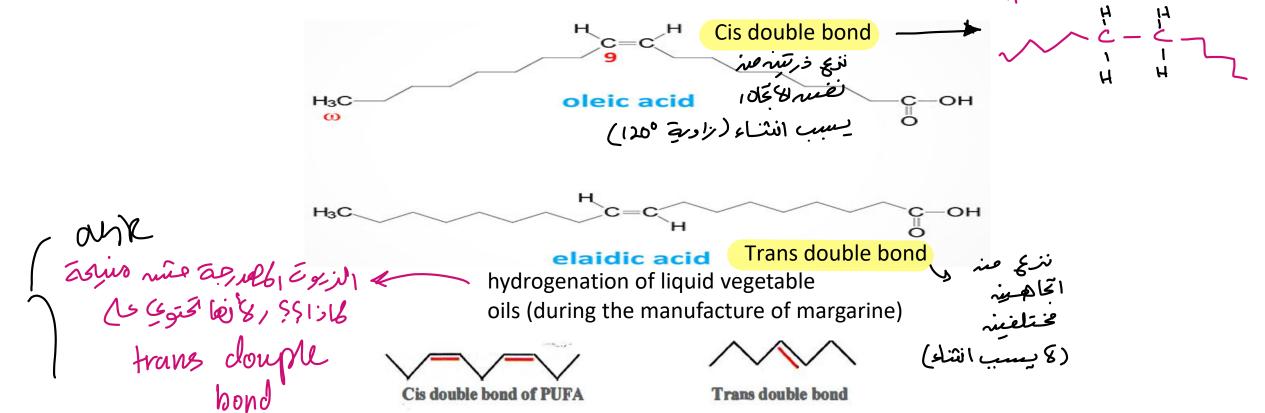
 The most common fatty acids in nature are <u>long chain and</u> <u>straight chain (alipathic)</u> with an <u>even number</u> of carbon atoms.

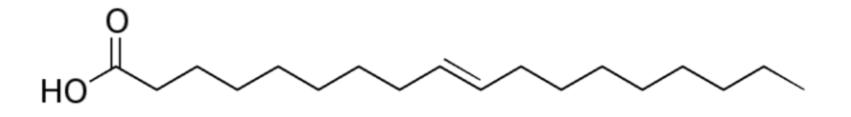
Chemistry of fatty acids

- <u>Generally</u> are hydrophobic \rightarrow water insoluble
- Carboxyl group (COOH) at one end and methyl (CH3) group at another
- Carboxyl group acquires negative charge:
 - Negative charge → polar so affinity for water
 - Hydrocarbon chain \rightarrow water insoluble
- The longer the chain, the more hydrophobic it is, the shorter it is, more probable

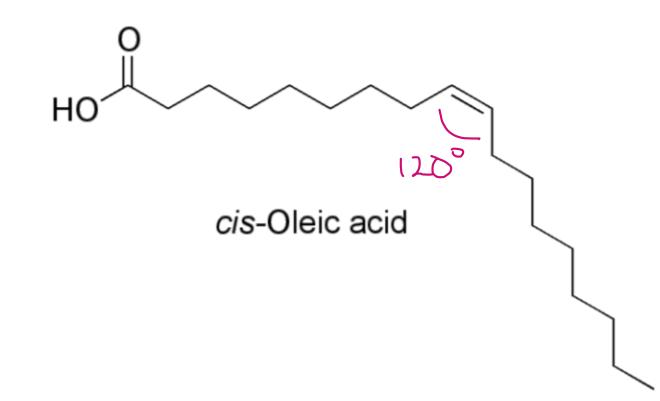
Amphipathic

Saturated fatty acids

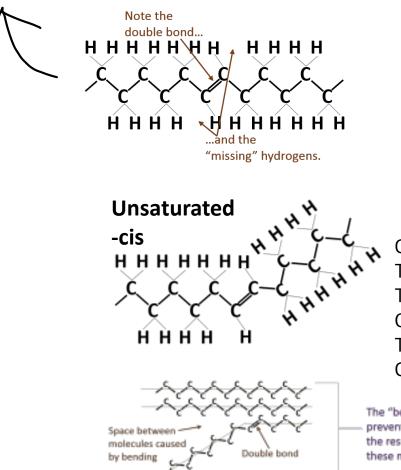

- These contain no double bonds
- All fatty acids containing an even number of carbon atoms from C4 to C24 occur in natural fats and oils, the most common being palmitic and stearic acids
- Short and medium chain fatty acids are uncommon except in milk fat and butter.


 CH_3 - (CH_2)n- COOH (n = Total number of carbons - 2), for example:

Chain length	Name	CNo	Chemical formula
Short			CH ₃ -COOH
		C ₄	CH ₃ -(CH ₂) ₂ -COOH
	- Caproic acid	C ₆	CH ₃ -(CH ₂) ₄ -COOH
Medium	- Capric acid Coconut	C ₁₀	CH ₃ -(CH ₂) ₈ -COOH
Long	- Palmitic acid Body fat	C ₁₆	CH ₃ -(CH ₂) COOH
	- Stearic acid	C ₁₈	CH ₃ -(CH ₂) COOH
	- Arachidic acid Peanut	C ₂₀	CH ₃ -(CH ₂) ₁₈ -COOH
Very long	- Lignoceric acid		CH ₃ -(CH ₂) ₂₂ -COOH

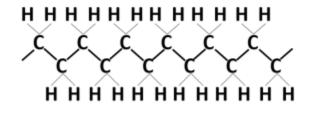

Unsaturated fatty acids

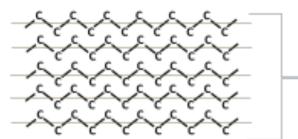
- Naturally occurring unsaturated FA contain Cis double bonds
- This makes them bend 120° at the double bond and lowers their melting temperature.
 if it was saturated



trans-Oleic acid

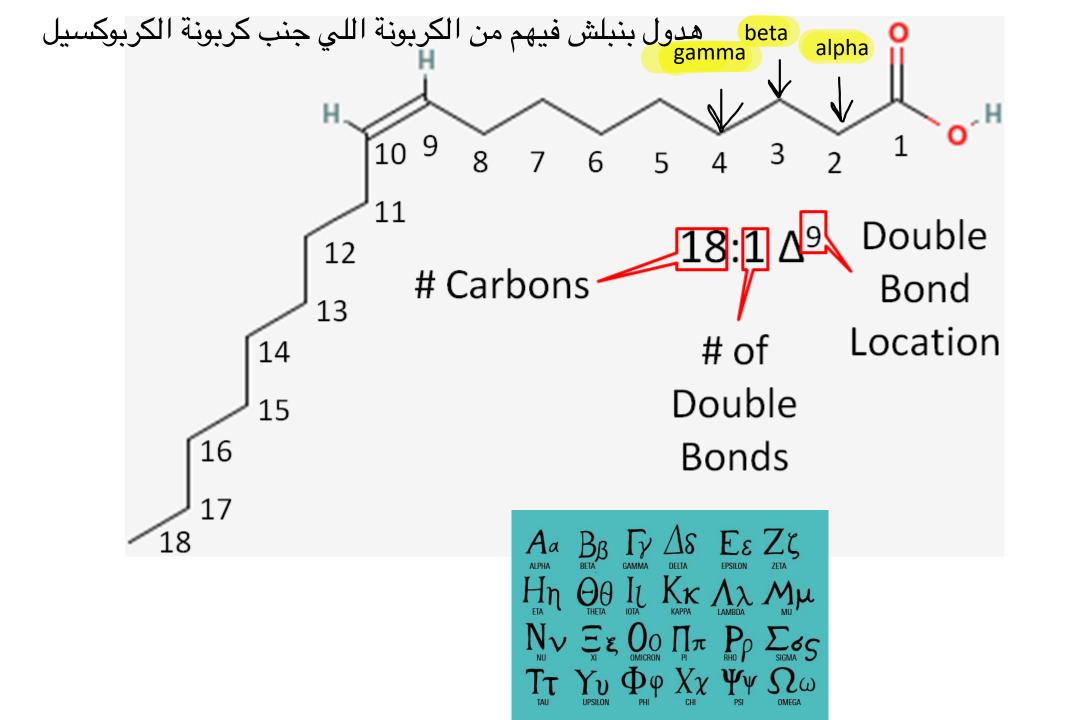
اي اشـي صلب في درجة حرارة الغرفة بكون سـي-١)الدهنيات الحيوانية (صلبة) ف سـي-٢) السمنة سـي-٣) الزيت العادي (مش زيتون) سـي-

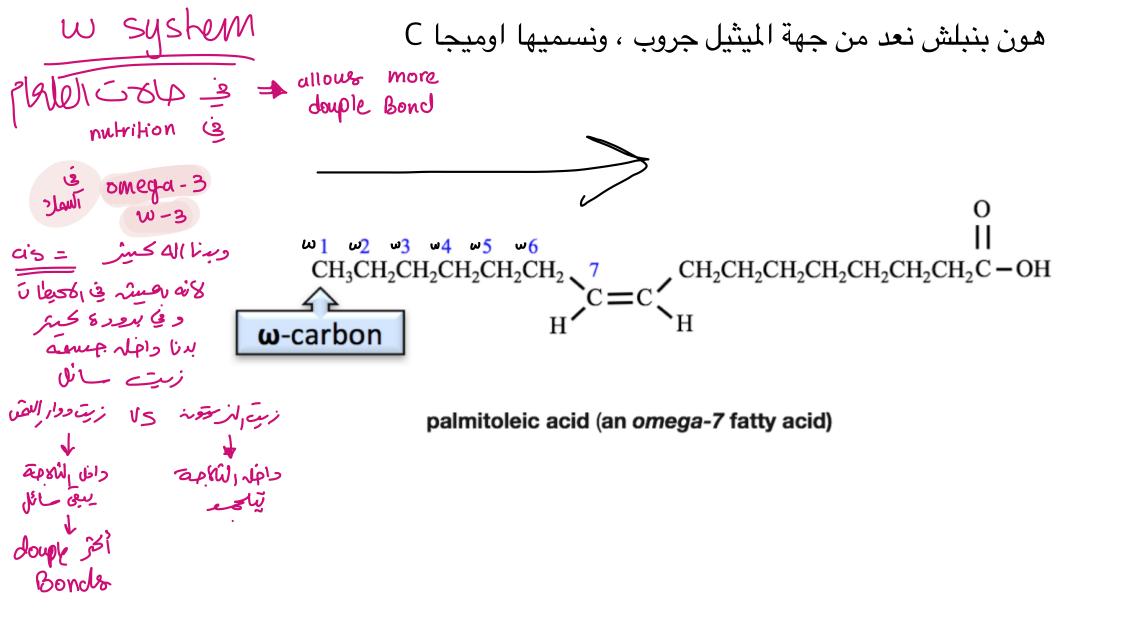

Trans looks like saturated



Cis .. it bends The structure has spaces within it This results in a fluid structure in room T Oils are mostly liquid This means that they have douple bond/s Cis douple bond

The "bent" structure - prevents tight grouping; the resulting spaces keep these molecules fluid.

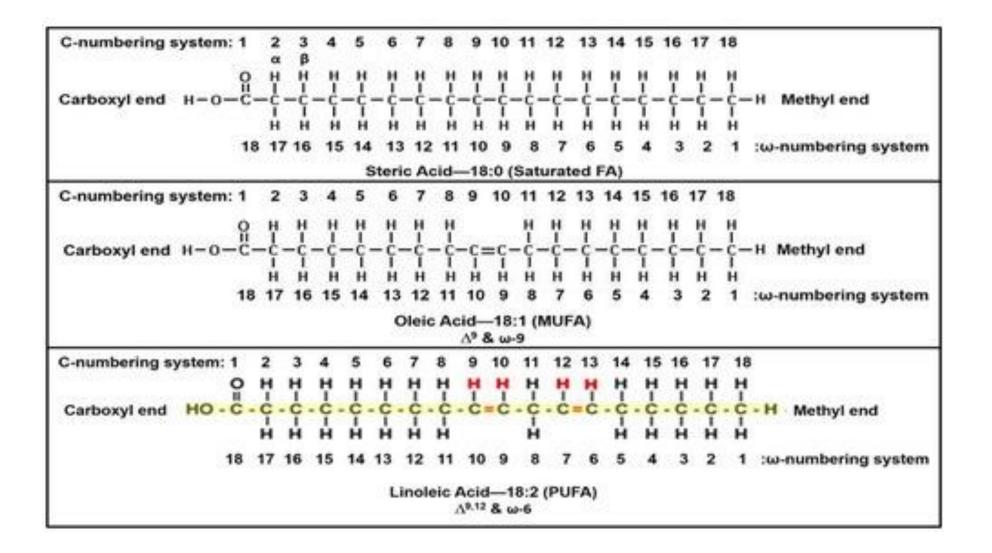

Saturated

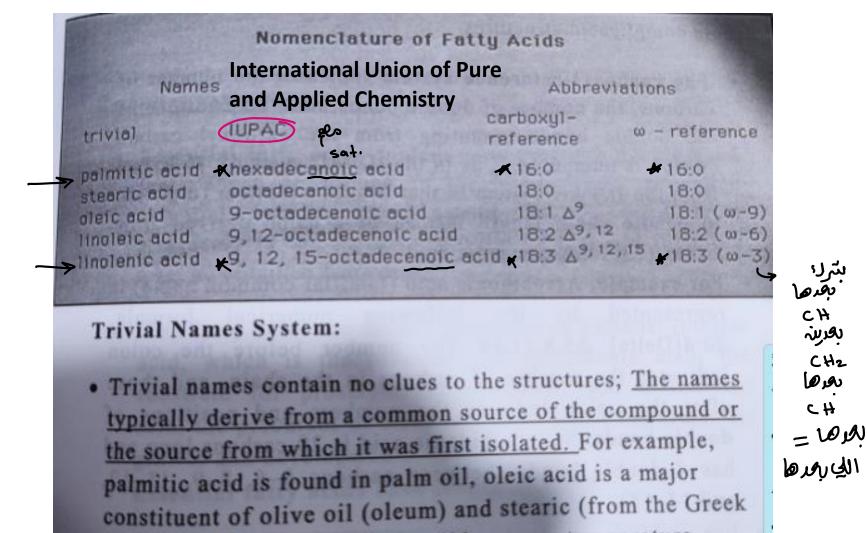


Linear structure allows for tightly packed fatty acids.

- Two systems are used for numbering of carbon atoms and denoting the position of double bonds in fatty acids:
- (1) Delta (Δ) numbering, or C-numbering, and Greek lettering system
 - carbon atoms are numbered from the carboxyl group, which is given the number 1
 - The carbon atom adjacent to the carboxyl group is C-2, and is also known as the α-carbon
 - \succ The next carbon is C-3 and is also known as the β -carbon
 - The position of the double bonds is shown by the Greek letter Δ (delta), e.g. Δ⁹ indicates a double bond between carbons 9 and 10 such as in palmitoleic acid

مینہ 12/13 ج بینہ 12/13 Linoleic (C₁₈) $\triangle 9$, 12 (two double bonds) ($\omega 6$ family) CH_{2} -(CH_{2})4-CH = CH- CH_{2} -CH = CH-(CH_{2})7 -COOHω6 12 9 18 Linolenic (C₁₈) $\Delta 9$, 12, 15 (three double bonds) ($\omega 3$ family) $CH_3 - CH_2 - CH = CH - CH_2 - CH = CH - CH_2 - CH = CH - (CH_2)7 - COOH$ ω3 15 12 9 18 ∕≫20:4∕_5,8,11,14 Arachidonic (C₂₀) $\Delta 5$, 8, 11, 14 (four double bonds) ($\omega 6$ family) $CH_3 - (CH_2)4 - CH = CH - CH_2 - CH = CH - CH_2 - CH = CH - (CH_2)3 - COOH$ ω6 14 11 8 5 20 btw 2 douple Bonds, we must have normal citz




(2) Omega (ω) numbering system

The methyl carbon *at* the end of the hydrocarbon chain is known as the ω1 carbon (omega 1 carbon)

From the nutritional point of view, it is better to indicate the position of the double bond as related to the ω-carbon rather than the carboxyl carbon

In this way palmitoleic acid is ω 7, oleic acid is ω9, linoleic and arachidonic acids are ω 6, and α-linoenic and timnodonic acids are ω3. *Palmitoleic (unsaturated palmtic acid): 16:1:w7 $CH_3 - (CH_2)_5 - CH = CH - (CH_2)_7 - COOH$ 10 9 *Oleic (unsaturated stearic): 18:1:w9 $CH_3 - (CH_2)_7 - CH = CH - (CH_2)_7 - COOH$ 10 9 *Nervonic (unsaturated lignoceric): 24:1:w9 $CH_3 - (CH_2)_7 - CH = CH - (CH_2)_{13} - COOH$ 16 15

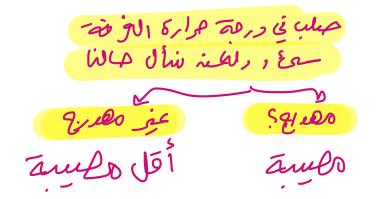
word meaning solid) acid is solid at room temperature.

Spiders (arachnids) contain arachidonic acid.

Anoic: saturated Enoic: unsaturated

Classification of fatty acids

- Non-essential fatty acids: can be synthesized in our bodies
- Essential fatty acids:
 - Not synthesised in our body (must be taken in diet)


 ها الجسم كالسحيني الجسم كالسحيني - Linoleic, (ω6), linolenic (ω3) are essential fatty acids (EFA), they cannot be synthesized by the body and

 position الع في المعالي ال

 $_{1}$ – Arachidonic acid is not one of the essential fatty acids

الوعما • However it does become essential if there is a deficiency in linoleic acid or In noleic + linolenic • if there is an inability to convert linoleic acid to arachidonic acid ينقدر خصنهم

Importance

- Palmitic acid is the commonest fatty acid in human tissues
- Source in diet: animal fats (e.g. milk), palm & coconut oil
- \uparrow intake \rightarrow \uparrow blood cholesterol + \uparrow coronary heart disease.

• Trans un-saturated fatty acids:

- V small amounts found in butter but the main source in diet is from hydrogenated vegetable oils (eg, margarine).
- Trans fatty acids compete with essential fatty acids → may exacerbate essential fatty acid deficiency
- Structurally similar to saturated fatty → hypercholesterolemia & atherosclerosis

Importance

• Cis unsaturated fatty acids :

• Either mono or polyunsaturated

	Monoenoic acids	Polyenoic acids		
		co6PUFAs	ω3 PUFAs	
Sources	are present in all animal and vegetable oils. Olive oil is a particular rich source.	are present in nuts, olives, various oils as sunflower, cottonseed and corn oil.	are present in plant oils as flaxseed and canola and in fish oil.	
		Linoleic acid (18:2) is the precursor of $\omega 6$ family	α-Linolenic acid (18:3) is the precursor of ω3 family	
Biomedical importance	Intake has beneficial health effects as: -Decreased plasma cholesterol	Intake of 66 PUFAs may lead to: -decreased plasma cholesterol	Intake of ω3 PUFAs may reduce the incidence of cardiovascular disease as they: -lower the blood pressure -lower plasma triacylglycerol levels -decrease the tendency to thrombosis	

Students to present (next week)

- Compare and contrast of MUFA, PUFA, SFA content of oils present in the market (5 min)
 - What is the most healthy and most unhealthy oil and why

 List foods that contain harmful fats (trans and saturated fats) – as a main ingredient or as one of the ingredients (5 min) – why are they unhealthy Which of the following fatty acids is considered essential and must be obtained from the diet?

- a) Stearic acid
- b) Oleic acid
- c) Linoleic acid
- d) Palmitic acid

• Answer: c) Linoleic acid

Which of the following types of fatty acids has been associated with an increased risk of cardiovascular disease?

- a) Saturated fatty acids
- b) Monounsaturated fatty acids
- c) Polyunsaturated fatty acids
- d) Omega-3 fatty acids

Answer: a) Saturated fatty acids

• Which of the following lipids is a major component of adipose tissue and serves as a source of energy storage?

- a) Triglycerides
- b) Cholesterol
- c) Phospholipids
- d) Glycolipids

Answer: a) Triglycerides

 Which of the following lipids is a branched-chain fatty acid commonly found in dairy products and has been associated with a reduced risk of cardiovascular disease?

- a) Myristic acid
- b) Lauric acid
- c) Palmitic acid
- d) Pentadecanoic acid

Answer = d

A fatty acid has 3 double bonds and 18 carbon atoms. Which of the following is the correct representation of this fatty acid

- A. 18: 1 delta 9
- B. 18: 2 delta 9, 12
- C. 18:3 delta 9, 12, 15
- D. 18:3 delta 9, 10, 11 \leftarrow = -
- E. 18:3 delta 9-15

Answer: C