

RESPIRATORY SYSTEM

НАЧАТ ВАТСН

SUBJECT :
LEC NO.: \qquad
DONE BY: \square
http://www.medclubhu.weebly.com/

PULMONARY AND ALVEOLAR VENTILATION $\left(\mathrm{V}_{\mathrm{A}}\right)$

Dr. Waleed R. Ezzat

Lecture objectives:

By the end of this lecture the student should be able to:

1. Describe pulmonary and alveolar ventilation.
2. Define and contrast the following terms: anatomic dead space, physiologic dead space, total minute ventilation and alveolar minute ventilation.
3. Define and contrast the relationships between alveolar ventilation and the arterial PCO_{2} and PO_{2}.
4. Predict the effects of alterations of alveolar ventilation on alveolar carbon dioxide and oxygen levels.
5. Describe the effect of dead space on alveolar ventilation.
6. Understand Fowler's method of measuring the anatomic dead space. And calculate the volume of dead space in a lung using the Bohr equation.
7. Describe and explain the mechanism of regional differences in alveolar ventilation in the normal lung.

Alveolar Ventilation $\left(\mathrm{V}_{\mathrm{A}}\right)$

Vtco 350 mL
The rate at which new air reaches gas exchange areas
 These areas include the alveoli, alveolar sacs, alveolar ducts, and respiratory bronchioles.

The total area of the alveolar walls in contact with capillaries in both lungs is about $70 \mathrm{~m}^{2}$
 in conductina l.he respiratary

1. The anatomic dead space: is the volume of gas that occupies the airways, which are called the conducting zone. The conducting zone does not participate in gas exchange because of the thickness of the airway walls (nose, pharynx, and trachea). \rightarrow wis cos

- saturate the gas with $\mathrm{H}_{2} \mathrm{O}$ vapor that will slightly dilute the O_{2} and N_{2}

.
sixkle concentrations and prevent drying of the alveolar surface assist in the removal of foreign materials

䢒 aiveol si: approximately $2 \mathrm{~m} / \mathrm{kg}$ or 150 ml in an young adult, roughly a third of the tidal volume. This value increases slightly with age.

Note:

- Air in the dead space is the first part of air to be removed on expiration.
- Normally, the anatomic and physiologic dead spaces are nearly equal, significant difference only occurs in patients with lung diseases because of the increase in alveolar dead space.
artificial expiration co
 alveolar air isl

Methods of measuring the total dead

 space: (coure air)(dead space) 150 mm \rightarrow Eolaal deod spocs \quad batu

1. Bohr's method: depends on determining CO_{2} tensions in the mixed expired and alveolar gases.

$\mathrm{V}_{\mathrm{D}}=$ Volume of dead space

$\mathrm{V}_{\mathrm{T}}=$ Tidal Volume

Methods of measuring the total dead

 space: measure of anoliomical dead space anly.2. Fowler's method: uses expired N_{2} as an indicator. The subject inspires a single deep breath of 100% oxygen, and then the expired N_{2} is measured during the subsequent full expiration through a rapidly recording nitrogen meter.

$V_{D}=$ The volume of dead space gas
$\mathrm{V}_{\mathrm{E}}=$ The total volume of expired air
Note: Fowler's method reflects the morphology of the lung (i.e. anatomic dead space).

Measurement of Alveolar Ventilation $\left(\mathrm{V}_{\mathrm{A}}\right)$

To measure the volume of new air that participates in the exchange of O_{2} and CO_{2} per minute the following equation is used;

$$
\dot{\mathrm{V}}_{\mathrm{A}}=\mathrm{f} .\left(\mathrm{V}_{\mathrm{T}}-\mathrm{V}_{\mathrm{D}}\right)
$$

- With a respiratory rate of $12-15 / \mathrm{min}, \dot{\mathrm{V}}_{\mathrm{A}}$ is about $4200-5000 \mathrm{ml} / \mathrm{min}$.
*- Adequate alveolar ventilation is critical because it determines O_{2} and CO_{2} tensions in the lungs.

Frurit perlosegional differences in ventilation

- In upright position, ventilation per unit volume is greatest near the bottom of the lung and becomes progressively smaller toward the top.
- In the supine position, this difference disappears, with the result that apical and basal ventilations become the same. However, the ventilation of the lowermost (posterior) lung exceeds that of the uppermost (anterior) lung.
- The lower regions of the lung are better ventilated (alveoli expand more) than the upper regions because of the effects of gravity on the lung.

1. Alveolar CO_{2} tension $\left(\mathrm{P}_{\mathrm{ACO}_{2}}\right)$ is equal to arterial CO_{2} tension because of the high diffusibility of CO_{2}. It is about $40 \pm 4 \mathrm{mmHg}$, Regulation of this tension is very

- With constant rate of CO_{2} production, there is inverse relationship between alveolar ventilation and $\mathrm{P}_{\mathrm{aco}}$. If alveolar ventilation is halved, $\mathrm{P}_{\mathrm{aCO}}^{2}$ will double. So ;
- Hyperventilation (with constant rate of CO_{2} production) \rightarrow Hypocapnia (\downarrow alveolar CO_{2} tension) \rightarrow Respiratory alkalosis
- Hypoventilation \rightarrow Hypercapnia (\uparrow alveolar CO_{2} tension), which if it exceeds $45 \mathrm{mmHg} \rightarrow$ Respiratory acidosis.
Hypercapnia can lower the O_{2} tension in the alveoli by

السببهصوزيارة ventilation

Note: It is important to differentiate between Hyperventilation and Hyperpnea. Hyperpnea is increased alveolar ventilation with no ventilation change in $\mathrm{P}_{\mathrm{aCO}}^{2}$ as in exercise and fever. This is due to (huyererneas) increased CO_{2} production by metabolism.

Alveolar O_{2} and CO_{2} tensions

2. Alveolar O_{2} tension $\left(\mathrm{P}_{\mathrm{AO}_{2}}\right)$. Inspiration brings fresh air into the alveoli, which normally maintains the alveolar O_{2} tension at about 100 mmHg .
An increase in alveolar ventilation $\rightarrow \mathrm{P}_{\mathrm{aO}_{2}}$ will increase in non-linear relationship, as more oxygen is removed from the alveolar gas per unit time than CO_{2} is added.

- Alveolar CO_{2} tension
- Changes in barometric pressure
- Fraction of O_{2} inspired \qquad
$\mathbf{P}_{\mathrm{AO}_{2}}$ can be calculated using the Alveolar Gas Equation

$\mathrm{F}_{1} \mathrm{O}_{2}=$ Fraction of oxygen in the inspired gas
$R=0.8$ (respiratory exchange ratio)
Note: Water vapor pressure at body temperature of $37^{\circ} \mathrm{C}$ is 47 mmHg regardless of the external barometric pressure.

ventilation ven bilation
Alveolar ventilation (L /min)
5

$$
{ }^{10} \mathrm{v}_{\mathrm{CO} 2}=\text { amount of carbon dioxide eliminated in } \mathrm{ml} / \mathrm{min}
$$

Test Question:

Respiratory dead space:
A. Saturates inspired air with water vapor before it reaches the alveoli.
B. Removes all particles from inspired air before it reaches the alveoli.
C. Decreases when blood catecholamine levels rise.
D. Decreases during a deep inspiration.
E. Increases during a cough.

