Histology of The Female Reproductive System

The Female Reproductive System

- Consists of:
 - Ovary
 - Oviduct
 - Uterus
 - Vagina
 - External genitalia
- Function:
 - Production of oocytes
 - Keep and protect developed oocytes
 - Production of hormones
 - Receive and keep the conceptus

The Ovary

- Almond-shaped body 3X1.5X1 cm
- Covered by Germinal Epithelium
- Protected by Tunica Albuginea
- Divided into:

Cortex full of ovarian follicles within the stroma Medulla is made of loose connective and is richly vascularized

Ovarian Follicles

- Primordial germ cells leave the yolk sac to the ovary in the first month
- They divide and differentiate into oogonia that undergo mitotic division
- In the 3rd month, mitosis stops and the oogonia differentiate into the primary oocyte
- Primary oocytes begin the first meiotic division and stop in prophase during intrauterine life
- After birth, all primary oocytes are in prophase of the first meiotic division

Ovarian Follicles, Cont.,

- The primary oocyte surrounds itself with a single layer of flattened follicular cells and becomes a Primordial follicle
- Basal lamina surrounds follicular cells and acts as a blood-follicle barrier
- Follicular atresia

- At birth, there are about 700,000 follicles and 2/3 of them remain at puberty
- Of the 2/3 (450,000), only 450 are liberated during the female fertile life

Follicular Growth

- At puberty, FSH induces follicular growth which coincides with the menstrual cycle
- It includes changes in:

Growth of oocyte (Cell and Nucleus)

Proliferation and changes in follicular cells

Proliferation and differentiation of stromal fibroblasts

- Selection of the primordial follicle destined for growth involves many hormonal, differences in FSH receptors, estrogen synthesis, and aromatase activity.
- Polycystic ovary syndrome

Follicular Growth

Primordial follicle

Primary unilaminar follicle

Secondary, Antral follicle)

MATURE GRAAFIAN FOLLICLE

Mature follicle

Theca Cells

 Stromal cells surrounding the follicle differentiate into: Outer vascularized cellular layer (Theca interna) Inner fibrous layer (Theca externa)

Ovulation

- Hours before ovulation, mature follicle bulging against tunica albuginea develops a whitish or translucent ischaemic area called Stigma.
- Rupture of the follicle and release of Oocyte.
- Expulsion of primary oocyte occurs at the midcycle under the effect of LH surge

Ovulation

- Following LH surge
 - Granulosa cells secrete large amounts of follicular fluid
 - Fluid contains prostaglandins, proteoglycans, and proteases
- Proteases release the **blood-follicle barrier**
- Cumulus oophorus cells secrete Hyaluronan which increases the viscosity of extracellular fluid leading to swell of the follicle and leading to detachment of the oocyte-granulosa cell complex
- Weakness of the wall at the stigma
- Spell of plasmin from ruptured capillaries degrades collagen in the tunica albuginea
- Contraction of muscle fibers in the theca triggered by prostaglandin

Ovulation

- 1st meiotic division ends just before ovulation forming two cells
- They are the secondary oocyte and first polar body
- After the expulsion, the secondary oocyte starts 2nd meiotic division and stops at metaphase
- Expelled oocyte enters the open end of the oviduct
- Fertilization takes place within 24 hours or death of oocyte ensues
- Fertilization triggers the completion of the 2nd meiotic division

Corpus Luteum

- After ovulation, granulosa cells and theca interna cells reorganize to form an endocrine gland called corpus luteum
- Granulosa cells increase in size with steroid secreting characteristics (Granulosa lutein cells)
- Theca interna cells become (Theca lutein cells)
- Capillaries invade the lumen
- LH leads to the formation of corpus luteum and change the set of enzymes to secrete progesterone and androstenedione → (estrogen)

- Corpus luteum continues to secrete hormones under the effect of LH for 10-12 days
- It is called the Corpus luteum of menstruation

Corpus Albicans

- The large amount of progesterone and estrogen from the corpus luteum leads to decreased FSH
- Corpus luteum of menstruation lasts for 10-12 days
- Without further LH secretion, progesterone secretion from the corpus luteum stops, menstruation ensues and FSH increases again to start a new cycle of follicular growth
- Remnants of the corpus luteum will be degenerated by apoptosis and phagocytosed by macrophages.
- The area will be invaded by fibroblast leads to the formation of scar tissue called corpus albicans
- Corpus luteum of pregnancy

Oviduct

- It is divided into Infundibulum, Ampulla, Isthmus and Intramural
- The infundibulum opens to the peritoneal cavity, while the intramural portion opens into the uterine cavity
- Wall consists of:
 - Mucosa: simple columnar (ciliated) and secretory cells (Peg cells)
 - Thick muscularis (Two layers)
 - Serosa

Uterus

- Wall consists of:
 - Serosa
 - Myometrium: 4 muscle layers
 - Endometrium: epithelium and glands
- Anatomically composed of:

Body

Fundus

Cervix

Menstrual Cycle

- Menstrual phase
- Proliferative phase (Follicular, Esrogenic)
- Secretory phase (Luteal, Progesteronic)
- Changes occur in the following:

Thickness

Glands

Blood vessels

Ground substance

Ovarian and Menstrual Cycles

 Association of the ovarian and menstrual cycles' changes and the level of steroid hormones and gonadotropin hormones

Uterine Cervix

It differs from the rest of the uterus.

- Lining epithelium
- Glands
- Connective tissue
- Muscle fibers

Vagina

Consists of three layers

- Mucosa
- Muscularis
- Adventitia

External Genitalia

Breast

obe

Areola Lactiferous sinu

tissue

actiferous duct

terlobar connectiv

- In girls and boys: Lactiferous sinuses
 Very small branching ducts
- At puberty:
 - **Ducts elongate**

Adipose tissue deposition (estrogen)

Adult (non-pregnant)

Many lobules

Each lobule consists of small, branching ducts with rudimentary small secretory units

• Z

