Mass Relationships in Chemical Reactions

Chapter 3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Micro World atoms & molecules Macro World grams

Atomic number: number of protons which equal the number of electrons in neutral atom

<u>Atomic mass</u> is the mass of an atom in atomic mass units (amu) (1amu=1.6 x10⁻²⁴g)

amu: define as mass exactly equal to 1/12 of the mass of Carbon-12

By definition: 1 atom ¹²C "weighs" 12 amu ${}^{1}H = 1.00794$ amu

 $^{16}O = 15.9994$ amu

<u>Ex</u> sulfer-36 has mass of 35.967 amu, which is around 3 times the mass of C-12 [35.967/12=2.99]

When express the mass in amu, mass of atom is approximately equal the number of protons and neutrons.

Average atomic mass: is the weighted average of all the naturally occurring isotopes

Ex: Natural lithium is:7.42% ⁶Li (6.015 amu) and 92.58% ⁷Li (7.016 amu)

Average atomic mass of lithium=

 $[(7.42/100) \times 6.015] + [(92.58/100) \times 7.016] = 6.941$ amu

1 1A																	18 8A
1 H 1.008	2 2A				24 – Cr 52.00 -		Atomic n Atomic m	umber nass				13 3A	14 4A	15 5A	16 6A	17 7A	2 He 4.003
3 Li 6.941	4 Be 9.012		Ave	erag	e at	omi	ic m	ass	(6.9	941))	5 B 10.81	6 C 12.01	7 N 14.01	8 O 16.00	9 F 19.00	10 Ne 20.18
11 Na 22.99	12 Mg 24.31	3 3B	4 4B	5 5B	6 6B	7 7B	8	9 — 8B —	10	11 1B	12 2B	13 Al 26.98	14 Si 28.09	15 P 30.97	16 S 32.07	17 Cl 35.45	18 Ar 39.95
19 K 39.10	20 Ca 40.08	21 Sc 44.96	22 Ti 47.88	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.69	29 Cu 63.55	30 Zn 65.39	31 Ga 69.72	32 Ge 72.59	33 As 74.92	34 Se 78.96	35 Br 79.90	36 Kr 83.80
37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.94	43 Tc (98)	44 Ru 101.1	45 Rh 102.9	46 Pd 106.4	47 Ag 107.9	48 Cd 112.4	49 In 114.8	50 Sn 118.7	51 Sb 121.8	52 Te 127.6	53 I 126.9	54 Xe 131.3
55 Cs 132.9	56 Ba 137.3	57 La 138.9	72 Hf 178.5	73 Ta 180.9	74 W 183.9	75 Re 186.2	76 Os 190.2	77 Ir 192.2	78 Pt 195.1	79 Au 197.0	80 Hg 200.6	81 Tl 204.4	82 Pb 207.2	83 Bi 209.0	84 Po (210)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89 Ac (227)	104 Rf (257)	105 Ha (260)	106 Sg (263)	107 Ns (262)	108 Hs (265)	109 Mt (266)	110	111	112						

Metals Metalloids	58 Ce 140.1	59 Pr 140.9	60 Nd 144.2	61 Pm (147)	62 Sm 150.4	63 Eu 152.0	64 Gd 157.3	65 Tb 158.9	66 Dy 162.5	67 Ho 164.9	68 Er 167.3	69 Tm 168.9	70 Yb 173.0	71 Lu 175.0
Nonmetals	90 Th 232.0	91 Pa (231)	92 U 238.0	93 Np (237)	94 Pu (242)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (249)	99 Es (254)	100 Fm (253)	101 Md (256)	102 No (254)	103 Lr (257)

Mole = 6.022×10^{23} units

<u>**The mole**</u> (mol) is a unit to account the number of particles(atoms, molecules,...)

• Number of atoms in exactly 12 grams of ${}^{12}C = 6.022 \times 10^{23}$ atoms (experimentally)

1 mole of ${}^{12}C = N_A = 6.022 \times 10^{23}$ atoms = 12.011 g

Avogadro's number = N_A

- Number of atoms, molecules or particles in one mole

1 mole of $X = 6.022 \times 10^{23}$ units of X

- 1 mole Xe = 6.022×10^{23} Xe atoms
- 1 mole NO₂ = 6.022×10^{23} NO₂ molecules

Molar mass: (\mathcal{M}) , defined as the mass (in grams or kilograms) of 1 mole of units (such as atoms or molecules) of a substance

1 mole ${}^{12}C$ atoms = 12.00 g = 6.022 x 10^{23} atoms

1 mole lithium atoms = 6.941 g of Li

For any element atomic mass (amu) = molar mass (grams/mol) from periodic table

Atomic mass of O=16 amu

Molar mass of O = 16g/mol

One Mole of:

 \mathcal{M} = molar mass in g/mol , n = mole

 N_A = Avogadro's number

Two main rules

1- mole=mass/molar mass

$$n=rac{m}{\mu}$$

2- number of atoms (or molecules)= moles x Avogadro's #

 $N = n.N_A$

Learning Check: Using Molar Mass

- **Ex.** How many moles of iron (Fe) are in 15.34 g Fe?
- What do we know?

1 mol Fe = 55.85 g Fe

• What do we want to determine?

15.34 g Fe = ? Mol Fe

Start

• Set up ratio so that what you want is on top & what you start with is on the bottom

End

10

Or using direct way
$$n = \frac{m}{\mu} = \frac{15.34}{55.85} = 0.2747$$
 mole Fe

Ex: How many potassium atoms are in 0.551 g of potassium (K) ?

1 mol of
$$K = 39.10$$
 g of K

$$N = n.N_A = \left(\frac{0.551}{39.10}\right).(6.022 \text{ x}10^{23}) = 8.49 \text{ x} 10^{21} \text{ atoms of K}$$

Ex: calculate the mass of one atom of Na (Na=23g/mol) $N = n. N_A$ $1 = \left(\frac{m}{23}\right).(6.022 \times 10^{23})$ $m = 3.82 \times 10^{-23}$ g

Molecular mass (or molecular weight) is the sum of the atomic masses (in amu) in a molecule.

For any molecule

molecular mass in amu = molar mass in grams

1 molecule of SO_2 weighs 64.07 amu 1 mole of SO_2 weighs 64.07 g

Ex How many H atoms are in 72.5 g of C_3H_8O ?

$$N = (n)_{molecule} N_A. (\# of H per molecule)$$
$$N = \left(\frac{72.5}{60.09}\right). (6.022x10^{23}). (8) = 5.82 \times 10^{24} \text{ H atoms}$$

Formula mass is the sum of the atomic masses (in amu) in a formula unit of an ionic compound.

NaCl

- 1Na 22.99 amu
- 1Cl <u>+ 35.45 amu</u> NaCl 58.44 amu

For any ionic compound

formula mass (amu) = molar mass (gram/mol)

1 formula unit of NaCl = 58.44 amu 1 mole of NaCl = 58.44 g of NaCl

1 formula unit of $Ca_3(PO_4)_2$

- 3 Ca 3 x 40.08 g/mol
- 2 P 2 x 30.97 g/mol
- 8 O <u>+ 8 x 16.00 g</u>/mol 310.18 g/mol

Units of <u>grams per mole</u> are the most practical for chemical calculations!

Ex Calculate the mass in grams of FeCl₃ in 1.53 × 10²³ formula units. (molar mass = 162.204 g/mol) $N = n. N_A$ 1.53x10²³ = $\left(\frac{m}{162}\right)$ x(6.022x10²³) m = 41.21g

<u>Ex</u> Calculate the number of formula units of Na_2CO_3 in 1.29 moles of Na_2CO_3

 $N = n. N_A$

 $N = (1.29)x(6.022x10^{23}) = 7.77 \times 10^{23}$ particles Na₂CO₃

Mole-to-Mole Conversion Factors

- Can use chemical formula to relate amoun of each atom to amount of compound
- In H₂O there are 3 relationships:
 - − 2 mol H \Leftrightarrow 1 mol H₂O
 - − 1 mol O \Leftrightarrow 1 mol H₂O
 - $-2 \mod H \Leftrightarrow 1 \mod O$
- Can also use these on atomic scale
 - − 2 atom H \Leftrightarrow 1 molecule H₂O
 - − 1 atom O \Leftrightarrow 1 molecule H₂O

Copyright © 2012 John Wiley & Sons, Inc. All rights reserved.

Ex Calculate the number of **moles** of calcium in 2.53 moles of $Ca_3(PO_4)_2$

2.53 moles of $Ca_3(PO_4)_2 = ? mol Ca$ 3 mol Ca \Leftrightarrow 1 mol Ca₃(PO₄)₂

<u>Ex</u> How many g of iron (Fe) are required to use up all of 25.6 g of oxygen atoms (O) to form Fe_2O_3 ?

- $\stackrel{=}{\longrightarrow} mol O \rightarrow mol Fe \rightarrow mass Fe$
 - $25.6 \text{ g O} \rightarrow ? \text{ g Fe}$
 - $3 \mod O \Leftrightarrow 2 \mod Fe$
- $-n_{0} = \frac{25.6}{16} = 1.6 \text{ mol O}$ 3 mol O \Leftrightarrow 2 mol Fe 1.6 \Leftrightarrow ?? mol Fe $-n_{Fe} = (1.6 \times 2)/3$ =1.06
- mass of Fe = $1.06 \times 55.85 = 59.2 \text{ g of Fe}$

Determining Empirical & Molecular Formulas

• When making or isolating new compounds one must characterize them to determine structure &

Molecular Formula (MF)

- Exact composition of one molecule
- Exact whole # ratio of atoms of each element in molecule(\underline{Ex} :**MF of glucose is** $C_6H_{12}O_6$)

Empirical Formula (EF)

- Simplest ratio of atoms of each element in compound
- Obtained from experimental analysis of compound
 - **<u>Ex</u>** EF of glucose is CH₂O
 - **<u>Ex</u>** what is the EF of pentane (C_5H_{12})
 - EF is C_5H_{12} same as molecular formula

20

Three Ways to Calculate Empirical Formulas

1. From Masses of Elements

Ex. 2.448 g sample of which 1.771 g is Fe and 0.677 g is O.

2. From Percentage Composition Ex. 43.64 % P and 56.36 % O.

3. From Combustion Data

Given masses of combustion products

Ex. The combustion of a 5.217 g sample of a compound of C, H, and O in pure oxygen gave 7.406 g CO_2 and 4.512 g of H_2O .

Strategy for Determining Empirical Formulas

- 1. Determine mass in **g** of each element
- 2. Convert mass in **g** to **moles**
- 3. Divide all quantities by smallest number of moles to get smallest ratio of moles
- 4. Convert any non-integers into integer numbers.
 - Multiply by smallest number to make subscripts in step 3 integers

1. Empirical Formula from Mass Data

Ex: When a 0.1156 g sample of a compound was analyzed, it was found to contain 0.04470 g of C, 0.01875 g of H, and 0.05215 g of N. Calculate the empirical formula of this compound.

Step 1: Calculate moles of each substance

$$0.04470 \text{ g G} \times \frac{1 \text{ mol C}}{12.011 \text{ g G}} = 3.722 \times 10^{-3} \text{ mol C}$$
$$0.01875 \text{ g H} \times \frac{1 \text{ mol H}}{1.008 \text{ g H}} = 1.860 \times 10^{-2} \text{ mol H}$$
$$0.05215 \text{ g N} \times \frac{1 \text{ mol N}}{14.0067 \text{ g N}} = 3.723 \times 10^{-3} \text{ mol N}$$

1. Empirical Formula from Mass Data **Step 2:** Select the smallest # of moles. • The smallest is 3.722×10^{-3} mole **Step 3**: Divide all # of moles by the smallest one Mole ratio Integer ratio 3.722×10^{-3} mol C 1.000 = 1 3.722×10⁻³ mol C • C = 1.860×10^{-2} molH 4.997 = 5 • H = 3.722×10^{-3} mol C 3.723×10^{-3} mol N • N = 1.000 = 1 3.722×10^{-3} mol C

Empirical formula = CH_5N

1. Empirical Formula from Mass Data

<u>*Ex 2:*</u>One of the compounds of iron and oxygen, "black iron oxide," occurs naturally in the mineral magnetite. When a 2.448 g sample was analyzed it was found to have 1.771 g of Fe and 0.677 g of O. Calculate the empirical formula of this compound.

1. Calculate moles of each substance

 $1.771 \text{ gFe} \times \frac{1 \text{ mol Fe}}{55.485 \text{ gFe}} = 0.03171 \text{ mol Fe}$ $0.677 \text{ g Q} \times \frac{1 \text{ mol O}}{16.00 \text{ g Q}} = 0.0423 \text{ mol O}$

1. Empirical Formula from Mass Data

2. Divide both by smallest #mol to get smallest whole # ratio.

$$\frac{0.03171 \text{ mol Fe}}{0.03171 \text{ mol Fe}} = 1.000 \text{ Fe} = \text{Fe}_{1.00} \text{O}_{1.33}$$
$$\frac{0.0423 \text{ mol O}}{0.03171 \text{ mol Fe}} = 1.33 \text{ O}$$

3-Multiply by smallest number to make subscripts in step 2 integers

$$Fe_{(1.00\times3)}O_{(1.33\times3)} = Fe_3O_{3.99}$$

Empirical Formula = Fe_3O_4

2. Empirical Formula from % Composition

Ex :Calculate the empirical formula of a compound whose % composition data is 43.64 % P and 56.36 % O.

Step 1: Assume 100 g of compound.

- 43.64 g P 1 mol P = 30.97 g
- 56.36 g O
 1 mol O = 16.00 g

43.64 g P × $\frac{1 \text{ mol P}}{30.97 \text{ g P}} = 1.409 \text{ mol P}$ 56.36 g Q × $\frac{1 \text{ mol O}}{16.00 \text{ g Q}} = 3.523 \text{ mol P}$ 2. Empirical Formula from % Composition

Step 2: Divide by smallest number of moles

 $\frac{1.409 \text{ mol P}}{1.409 \text{ mol P}} = 1.000$

 $\frac{3.523 \text{ mol O}}{1.409 \text{ mol P}} = 2.500$

Step 3: Multiple by n to get smallest integer ratio
Here n = 2

P: $1.00 \times 2 = 2$ O: $2.500 \times 2 = 5$ Empirical formula = P_2O_5 3. Empirical Formulas from Combustion Analysis:

Combustion Analysis

- Compounds containing carbon, hydrogen, & oxygen, can be burned completely in pure oxygen gas
 - Only carbon dioxide & water are produced
- **Ex.** Combustion of ethanol (C_2H_5OH)

 $C_2H_5OH + 3O_2 \longrightarrow 2CO_2 + 3H_2O$

Apparatus for determining the empirical formula of ethanol. The absorbers are substances that can retain water and carbon dioxide, respectively.

Combustion of ethanol

3. Empirical Formulas from Combustion Analysis:

- Carbon dioxide & water separated & weighed separately
 - All C ends up as CO₂
 - All H ends up as H₂O
 - Mass of C can be derived from amount of CO_2
 - mass $CO_2 \rightarrow mol \ CO_2 \rightarrow mol \ C \rightarrow mass \ C$
 - Mass of **H** can be derived from amount of H_2O
 - mass $H_2O \rightarrow mol H_2O \rightarrow mol H \rightarrow mass H$
 - Mass of oxygen is obtained by difference mass $O = mass \ sample - (mass \ C + mass \ H)$

E*x*. The combustion of a 5.217 g sample of a compound of C, H, and O in pure oxygen gave 7.406 g CO₂ and 4.512 g of H₂O. Calculate the empirical formula of the compound.

	С	Н	0	CO ₂
Molar mass (g/mol)	12.011	1.008	15.999	44.01

1. Calculate mass of C from mass of CO_2 . mass $CO_2 \rightarrow mole CO_2 \rightarrow mole C \rightarrow mass C$ 7.406 $gCO_2 \left(\frac{1 \text{ mol} CO_2}{44.01 \text{ g}CO_2} \right) \left(\frac{1 \text{ mol} C}{1 \text{ mol} CO_2} \right) \left(\frac{12.011 \text{ g}C}{1 \text{ mol} C} \right)$

= 2.021 g C

2. Calculate mass of H from mass of H_2O . mass $H_2O \rightarrow mol H_2O \rightarrow mol H \rightarrow mass H$

$$4.512 \text{ gH}_{2} O\left(\frac{1 \text{ mol H}_{2} Q}{18.015 \text{ gH}_{2} Q}\right) \left(\frac{2 \text{ mol H}}{1 \text{ mol H}_{2} Q}\right) \left(\frac{1.008 \text{ gH}}{1 \text{ mol H}_{2} Q}\right)$$

= 0.5049 g H

3. Calculate mass of O from difference. Mass O= total mass-(C mass + H mass)

= 5.217 g - (2.021 g C + 0.5049 g H) = 2.691 g O

Or we can use the following rule:

mass of element in sample = $\left(\frac{mass \ of \ product \ contain \ this \ element}{it \ molar \ mass}\right) x$ (#of element atoms in product) x (atomic mass of element)

:. mass of C in CO₂:
$$\frac{7.406}{44.01}$$
 x 1 x 12.01= 2.02 mass of C
mass of H in H₂O: $\frac{4.512}{18}$ x 2 x 1.008 = 0.504 mass of H

	С	Н	0
MM	12.011	1.008	15.999
g	2.021	0.5049	2.691

4. Calculate mol of each element

$$mol C = \frac{g C}{MMC} = \frac{2.021 g}{12.011 g/mol} = 0.1683 mol C$$
$$mol H = \frac{g H}{MMH} = \frac{0.5049 g}{1.008 g/mol} = 0.5009 mol H$$
$$mol O = \frac{g O}{MMO} = \frac{2.691 g}{15.999 g/mol} = 0.1682 mol O$$

$C_{\underbrace{0.1683}_{0.1682}}H_{\underbrace{0.5009}_{0.1682}}O_{\underbrace{0.1682}_{0.1682}}$

- Preliminary empirical formula
- $-C_{0.1683}H_{0.5009}O_{0.1682} = C_{1.00}H_{2.97}O_{1.00}$ 5. Calculate mol ratio of each element Empirical Formula = CH₃O

– Since all values are close to integers, round to

Determining Molecular Formula

- > Need molecular mass(molar mass) & empirical formula
- Calculate ratio of molecular mass to mass predicted by empirical formula & round to nearest integer

Empirical formula molar mass = 30.03 g/mol, find the molecular formula for Glucose .

Molecular formula= $\frac{180.16}{30.03} \times CH_2O = 6 \times CH_2O$ Molecular formula is $C_6H_{12}O_6$ **Ex** The empirical formula of hydrazine is NH_2 , and its molecular mass is 32.0. What is its molecular formula **Atomic Mass**: N:14.007; H:1.008; O:15.999

Solution

Molar mass of $NH_2 = (1 \times 14.01) + (2 \times 1.008) = 16.017g$

Molecular formula= $\frac{molar mass of unknown}{molar mass of EF} xEF$ $=\frac{32}{16.017} x NH_2$ $= 2 x NH_2$ Molecular formula : N₂H₄

Chemical reactions and chemical equations

A process in which one or more substances is changed into one or more new substances is a *chemical reaction*.

- A *chemical equation* uses chemical symbols to show what happens during a chemical reaction.
- 3 ways of representing the reaction of H_2 with O_2 to form H_2O

How to "Read" Chemical Equations

$$2 \text{ Mg} + \text{O}_2 \longrightarrow 2 \text{ MgO}$$

2 atoms Mg + 1 molecule O₂ makes 2 formula units MgO 2 moles Mg + 1 mole O₂ makes 2 moles MgO 48.6 grams Mg + 32.0 grams O₂ makes 80.6 g MgO

IS NOT

2 grams Mg + 1 gram O₂ makes 2 g MgO

Stoichiometry Calculations: Amounts of Reactants and Products in chemical reaction

Use the **fabulous four steps**!

- 1. Write the balanced chemical equation.
- 2. Convert quantities of known substances into moles.
- 3. Use **coefficients** in balanced equation to calculate the number of **moles of the sought quantity**.
- 4. Convert moles of sought quantity into the **desired units**.

Using Balanced Equation to Determine Stoichiometry

Ex. What mass of O_2 will react with 96.1 g of propane (C_3H_8) gas, to form gaseous carbon dioxide & water? Strategy

1. Write the balanced equation

 $C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(g)$

2. Assemble the tools

96.1 g C₃H₈ \rightarrow moles C₃H₈ \rightarrow moles O₂ \rightarrow g O₂ $\checkmark n_{C_3H_8} = \frac{96.1}{44.1} = 2.18 \text{ mol } C_3H_8$ $\checkmark 1 \mod C_3 H_8 \longrightarrow 5 \mod O_2$ 2.18 mol \longrightarrow ??? mol O₂ $\sqrt{n_{02}} = \frac{2.18 \times 5}{1} = 10.9 \text{ mol } O_2$ \checkmark mass₀₂ = 10.9 x 32 = 348.8 g

Ex: Methanol burns in air according to the equation

 $2 \text{ CH}_3\text{OH} + 3 \text{ O}_2 \longrightarrow 2 \text{ CO}_2 + 4 \text{ H}_2\text{O}$ m=??If 209 g of methanol are used up in the combustion, what mass of water is produced?

grams $CH_3OH \longrightarrow moles CH_3OH \longrightarrow moles H_2O \longrightarrow grams H_2O$

```
✓ Balanced equation

✓ n_{CH_3OH} = \frac{209}{32} = 6.53 \text{ mol CH}_3OH

✓ n_{H2O} :

2 CH<sub>3</sub>OH → 4H<sub>2</sub>O (mol ratio)

6.53 mol →???

✓ n_{H_2O} = \frac{6.53x4}{2} = 13.06

✓ mass_{H_2O} = 13.06 \times 18 = 235.08 \text{ g } H_2O
```

Limiting Reactant

- Reactant that is completely used up in the reaction
- Present in lower # of moles
- It determines the amount of product produced

Excess reactant

- Reactant that has some amount left over at end
- Present in higher # of moles

Four Steps to determine the limiting reagent

- 1. Balanced reaction: Done.
- 2. Find the mole of each reactant in the reaction
- 3. Divide the # of mole of each reactant on it coefficient
- 4. The one that give the smallest # in step 3 is the limiting reagent

<u>Ex:</u> For the following reaction $2NH_3 + CO_2 \longrightarrow (NH_2)_2CO + H_2O$

If we start with 637.2 g NH₃ and 1142g CO₂

a) which of the two reactants is the limiting reagent?

1- Balanced reaction $\sqrt{}$

2- mol NH₃ = $\frac{637.2}{17.03}$ = 37.16, and mol CO₂ = $\frac{1142}{44}$ = 25.9

3- NH_3 : 37.16/2 =18.7 (Smallest) \therefore NH_3 is the Limiting reagent and CO_2 : 25.9/1= 25.9 (CO_2 is excess)

- b) Calculate the mass of product $(NH_2)_2CO$ formed
- To find the mass formed of this product, we relate it to the limiting reagent (using mole ratio)
- $2 \text{ mol } \text{NH}_3 \longrightarrow 1 \text{ mol } (\text{NH}_2)_2 \text{CO}$
- $37.16 \text{ mol} \longrightarrow ???? \text{ mol} (NH_2)_2CO$
- ✓ mol (NH₂)₂CO = $\frac{37.16 \times 1}{2}$ = 18.71 mol
- \checkmark mass (NH₂)₂CO = 18.71 x 60.06 g/mol = 1124 g (theoretical yield)
- c) How many excess reagent (gram)is left at the end of reaction ?
- The CO₂ excess left (left over)=(initial mass of CO₂ reacted mass of CO₂)
- **First will find the Reacted mass of CO2 :**
- $1 \bmod CO_2 \longrightarrow 2 \bmod NH_3$
- **????** mol CO_2 \leftarrow **37.16** mol NH_3
- \checkmark mol CO₂=37.16/2=18.71
- ✓ reacted mass of $CO_2 = 18.71 \text{ x } 44 = 823.4 \text{ g}$
- \checkmark The mass left over of CO₂= initial mass reacted mass= 1142-823.4= 319 g

Do You Understand Limiting Reactants? In a reaction, 124 g of Al are reacted with 601 g of Fe_2O_3 . $2 Al + Fe_2O_3 \longrightarrow Al_2O_3 + 2 Fe$ Calculate the mass of Al_2O_3 formed in grams.

Also Limiting reagent can be determine based on the following statement "the limiting reagent will yield the smaller amount of the product"

- 1. Balanced reaction: $\sqrt{}$
- 2. Moles of "given" reactants.

Moles of AI = 124 g / 26.9815 g/mol = 4.60 molMoles of Fe₂O₃ = 601 g / 159.6882 g/mol = 3.76 mol 3. Moles of "desired" product, AI_2O_3 .

 $2 \text{AI} + \text{Fe}_2\text{O}_3 \longrightarrow \text{Al}_2\text{O}_3 + 2 \text{Fe}$

Moles of $Al_2O_3 = 3.76 \text{ mol Fe}_2O_3 \times \frac{1 \text{ mol } Al_2O_3}{1 \text{ mol } Fe}_2O_3 = 3.76 \text{ mole } Al_2O_3$ based on $Fe_2O_3 \times 1 \times 10^{-1} \text{ mol } Fe}_2O_3$

Keep the smaller answer! Al is the limiting reactant.

4. Grams of Al_2O_3 .

Grams of $Al_2O_3 = 2.30 \text{ mol } X 101.9612 \text{ g/mol} = 235 \text{ g}$

Reaction Yield

<u>Theoretical Yield</u> is the amount of product that would result if all the limiting reagent reacted.(calculated)

<u>Actual Yield</u> is the amount of product actually obtained from a reaction(experimentally).

- -How much is obtained in mass units or in moles
- Actual yield usually is less than theoretical yield

<u>Percent yield</u> Relates the actual yield to the theoretical yield, It is calculated as:

% Yield = $\frac{\text{Actual Yield}}{\text{Theoretical Yield}} \times 100$

Ex. If a cookie recipe predicts a yield of 36 cookies and yet only 24 are obtained, what is the % yield?

percentage yield =
$$\left(\frac{24}{36}\right) \times 100 = 67\%$$

Ex When 18.1 g NH₃ and 90.4 g CuO are reacted, the theoretical yield is 72.2 g Cu. The actual yield is 58.3 g Cu. What is the percent yield?

 $2\mathrm{NH}_3(g) + 3\mathrm{CuO}(s) \rightarrow \mathrm{N}_2(g) + 3\mathrm{Cu}(s) + 3\mathrm{H}_2\mathrm{O}(g)$

% yield =
$$\frac{58.3 \text{ g Cu}}{72.2 \text{ g Cu}} \times 100\%$$
 = 80.7%

Ex A chemist set up a synthesis of solid phosphorus trichloride by mixing 12.0 g of solid phosphorus with 35.0 g chlorine gas and obtained 42.4 g of solid phosphorus trichloride. Calculate the percentage yield of this compound. Analysis:

Write balanced equation $2P(s) + 3Cl_2(g) \longrightarrow 2PCl_3(s)$

Solution:

 $2P(s) + 3Cl_2(g) \longrightarrow 2PCl_3(s)$

1.Determine Limiting Reactant

mol of $P = \frac{12}{30.97} = \frac{0.39}{2} = 0.19$

mol of $Cl_2 = 35/70.9 = 0.49/3 = 0.16$ (smallest) Cl_2 is limiting reagent

- 2. Determine Theoretical Yield (mass of product PCl₃)
- 3 Cl₂: 2 PCl₃
- ✓ mol PCl₃ =(0.49x2)/3 = 0.33 mol PCl₃
- ✓ Mass $PCl_3 = 0.33 \times 137.32 = 44.9 \text{ g } PCl_3$ (theoretical yield)
 - 3. Determine Percentage Yield
 - Actual yield = 42.4 g

percentage yield = $\left(\frac{42.4 \text{ g PCl3}}{44.9 \text{ g PCl3}}\right) \times 100=94.43\%$

Stoichiometry Summary

