Mass Relationships in Chemical Reactions

Chapter 3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Micro World atoms \& molecules
 Macro World grams

Atomic number: number of protons which equal the number of electrons in neutral atom

Atomic mass is the mass of an atom in atomic mass units (amu) ($1 \mathrm{amu}=1.6 \times 10^{-24} \mathrm{~g}$)
amu: define as mass exactly equal to $1 / 12$ of the mass of Carbon-12

By definition:
 1 atom ${ }^{12} \mathrm{C}$ "weighs" 12 amu

On this scale

$$
\begin{aligned}
& { }^{1} \mathrm{H}=1.00794 \mathrm{amu} \\
& { }^{16} \mathrm{O}=15.9994 \mathrm{amu}
\end{aligned}
$$

Ex sulfer- 36 has mass of 35.967 amu , which is around 3 times the mass of C-12 $[35.967 / 12=2.99]$
$>$ When express the mass in amu, mass of atom is approximately equal the number of protons and neutrons.

Average atomic mass: is the weighted average of all the naturally occurring isotopes
Ex: Natural lithium is:7.42\% ${ }^{6} \mathrm{Li}(6.015 \mathrm{amu})$ and $92.58 \%{ }^{7} \mathrm{Li}$ (7.016 amu)

Average atomic mass of lithium=
$[(7.42 / 100) \times 6.015]+[(92.58 / 100) \times 7.016]=6.941 \mathrm{amu}$

$\begin{gathered} 1 \\ 1 \mathrm{~A} \end{gathered}$																	$\begin{aligned} & 18 \\ & 8 \mathrm{~A} \end{aligned}$
$\begin{gathered} 1 \\ \mathbf{H} \\ 1.008 \end{gathered}$	$\begin{gathered} 2 \\ 2 \mathrm{~A} \end{gathered}$		$\begin{gathered} 24 \\ \mathbf{C r} \\ 52.00 \end{gathered}$			Atomic number Atomic mass						$\begin{array}{r} 13 \\ 3 \mathrm{~A} \end{array}$	$\begin{array}{r} 14 \\ 4 \mathrm{~A} \end{array}$	$\begin{gathered} 15 \\ 5 A \end{gathered}$	$\begin{aligned} & 16 \\ & 6 A \end{aligned}$	$\begin{aligned} & 17 \\ & 7 \mathrm{~A} \end{aligned}$	$\begin{gathered} 2 \\ \mathrm{He} \\ 4.003 \end{gathered}$
	$\begin{gathered} 4 \\ \mathrm{Be} \\ \hline \end{gathered}$		Average atomic mass (6.94t)									$\begin{gathered} 5 \\ \mathbf{B} \\ 10.81 \end{gathered}$	$\begin{gathered} 6 \\ \mathbf{C} \\ 12.01 \end{gathered}$	$\begin{gathered} 7 \\ \mathbf{N} \\ 14.01 \end{gathered}$	$\begin{gathered} 8 \\ 0 \\ 16.00 \end{gathered}$	$\begin{gathered} 9 \\ \mathbf{F} \\ 19.00 \end{gathered}$	$\begin{gathered} 10 \\ \mathrm{Ne} \\ 20.18 \end{gathered}$
$\begin{gathered} 11 \\ \mathbf{N a} \\ 22.99 \end{gathered}$	$\begin{gathered} 12 \\ \mathbf{M g} \\ 24.31 \end{gathered}$	$\begin{gathered} 3 \\ 3 B \end{gathered}$	$\begin{gathered} 4 \\ 4 B \end{gathered}$	$\begin{gathered} 5 \\ 5 B \end{gathered}$	$\begin{gathered} 6 \\ 6 B \end{gathered}$	$\begin{gathered} 7 \\ 7 B \end{gathered}$	8	$\begin{gathered} 9 \\ -8 B \end{gathered}-$	10	$\begin{aligned} & 11 \\ & 1 B \end{aligned}$	$\begin{aligned} & 12 \\ & 2 B \end{aligned}$	$\begin{gathered} 13 \\ \text { Al } \\ 26.98 \end{gathered}$	$\begin{gathered} 14 \\ \mathrm{Si} \\ 28.09 \end{gathered}$	$\begin{gathered} 15 \\ \mathbf{P} \\ 30.97 \end{gathered}$	$\begin{gathered} 16 \\ \mathbf{S} \\ 32.07 \end{gathered}$	$\begin{gathered} 17 \\ \mathrm{Cl} \\ 35.45 \end{gathered}$	$\begin{gathered} 18 \\ \mathbf{A r} \\ 39.95 \end{gathered}$
$\begin{gathered} 19 \\ \mathbf{K} \\ 39.10 \end{gathered}$	$\begin{gathered} 20 \\ \mathbf{C a} \\ 40.08 \end{gathered}$	$\begin{gathered} 21 \\ \text { Sc } \\ 44.96 \end{gathered}$	$\begin{gathered} 22 \\ \mathbf{T i} \\ 47.88 \end{gathered}$	$\begin{gathered} 23 \\ \mathbf{V} \\ 50.94 \end{gathered}$	$\begin{gathered} 24 \\ \mathbf{C r} \\ 52.00 \end{gathered}$	$\begin{gathered} 25 \\ \mathbf{M n} \\ 54.94 \end{gathered}$	$\begin{array}{r} 26 \\ \mathbf{F e} \\ 55.85 \end{array}$	$\begin{gathered} 27 \\ \text { Co } \\ 58.93 \end{gathered}$	$\begin{gathered} 28 \\ \mathbf{N i} \\ 58.69 \end{gathered}$	$\begin{gathered} 29 \\ \mathrm{Cu} \\ 63.55 \end{gathered}$	$\begin{gathered} 30 \\ \mathbf{Z n} \\ 65.39 \end{gathered}$	$\begin{gathered} 31 \\ \mathbf{G a} \\ 69.72 \end{gathered}$	$\begin{gathered} 32 \\ \mathbf{G e} \\ 72.59 \end{gathered}$	$\begin{gathered} 33 \\ \text { As } \\ 74.92 \end{gathered}$	$\begin{gathered} 34 \\ \text { Se } \\ 78.96 \end{gathered}$	$\begin{gathered} 35 \\ \mathbf{B r} \\ 79.90 \end{gathered}$	$\begin{gathered} 36 \\ \mathbf{K r} \\ 83.80 \end{gathered}$
$\begin{gathered} 37 \\ \mathbf{R b} \\ 85.47 \end{gathered}$	$\begin{gathered} 38 \\ \mathbf{S r} \\ 87.62 \end{gathered}$	$\begin{gathered} 39 \\ \mathbf{Y} \\ 88.91 \end{gathered}$	$\begin{gathered} 40 \\ \mathbf{Z r} \\ 91.22 \end{gathered}$	$\begin{gathered} 41 \\ \mathbf{N b} \\ 92.91 \end{gathered}$	$\begin{gathered} 42 \\ \mathbf{M o} \\ 95.94 \end{gathered}$	$\begin{gathered} 43 \\ \mathbf{T c} \\ (98) \end{gathered}$	$\begin{gathered} 44 \\ \mathbf{R u} \\ 101.1 \end{gathered}$	$\begin{gathered} 45 \\ \mathbf{R h} \\ 102.9 \end{gathered}$	$\begin{gathered} 46 \\ \text { Pd } \\ 106.4 \end{gathered}$	$\begin{gathered} 47 \\ \mathbf{A g} \\ 107.9 \end{gathered}$	$\begin{gathered} 48 \\ \text { Cd } \\ 112.4 \end{gathered}$	$\begin{gathered} 49 \\ \text { In } \\ 114.8 \end{gathered}$	$\begin{gathered} 50 \\ \text { Sn } \\ 118.7 \end{gathered}$	$\begin{gathered} 51 \\ \mathbf{S b} \\ 121.8 \end{gathered}$	$\begin{array}{r} 52 \\ \mathbf{T e} \\ 127.6 \end{array}$	$\begin{gathered} 53 \\ \text { I } \\ 126.9 \end{gathered}$	$\begin{array}{r} 54 \\ \mathbf{X e} \\ 131.3 \end{array}$
$\begin{gathered} 55 \\ \text { Cs } \\ 132.9 \end{gathered}$	$\begin{array}{r} 56 \\ \mathbf{B a} \\ 137.3 \end{array}$	$\begin{gathered} 57 \\ \mathbf{L a} \\ 138.9 \end{gathered}$	$\begin{gathered} 72 \\ \text { Hf } \\ 178.5 \end{gathered}$	$\begin{gathered} 73 \\ \mathbf{T a} \\ 180.9 \end{gathered}$	$\begin{gathered} 74 \\ \mathbf{W} \\ 183.9 \end{gathered}$	$\begin{gathered} 75 \\ \mathbf{R e} \\ 186.2 \end{gathered}$	$\begin{gathered} 76 \\ \text { Os } \\ 190.2 \end{gathered}$	$\begin{gathered} 77 \\ \mathbf{I r} \\ 192.2 \end{gathered}$	$\begin{gathered} 78 \\ \mathbf{P t} \\ 195.1 \end{gathered}$	$\begin{gathered} 79 \\ \mathbf{A u} \\ 197.0 \end{gathered}$	$\begin{gathered} 80 \\ \mathbf{H g} \\ 200.6 \end{gathered}$	$\begin{gathered} 81 \\ \text { T1 } \\ 204.4 \end{gathered}$	$\begin{gathered} 82 \\ \text { Pb } \\ 207.2 \end{gathered}$	$\begin{gathered} 83 \\ \mathbf{B i} \\ 209.0 \end{gathered}$	$\begin{gathered} 84 \\ \text { Po } \\ (210) \end{gathered}$	$\begin{gathered} 85 \\ \text { At } \\ (210) \end{gathered}$	$\begin{gathered} 86 \\ \mathbf{R n} \\ (222) \end{gathered}$
$\begin{gathered} 87 \\ \mathbf{F r} \\ (223) \end{gathered}$	$\begin{gathered} 88 \\ \mathbf{R a} \\ (226) \end{gathered}$	$\begin{gathered} 89 \\ \mathbf{A c} \\ (227) \end{gathered}$	$\begin{gathered} 104 \\ \mathbf{R f} \\ (257) \end{gathered}$	$\begin{gathered} 105 \\ \mathbf{H a} \\ (260) \end{gathered}$	$\begin{gathered} 106 \\ \mathbf{S g} \\ (263) \end{gathered}$	$\begin{gathered} 107 \\ \text { Ns } \\ (262) \end{gathered}$	$\begin{gathered} 108 \\ \text { Hs } \\ (265) \end{gathered}$	$\begin{gathered} 109 \\ \mathbf{M t} \\ (266) \end{gathered}$	110	111	112						

Metals

Metalloids

Nonmetals

Dozen $=12$

 Mole $=6.022 \times 10$

The mole (mol) is a unit to account the number of particles(atoms, molecules,...)

- Number of atoms in exactly 12 grams of ${ }^{12} \mathrm{C}=\mathbf{6 . 0 2 2} \times 1 \mathbf{1 0}^{23}$ atoms (experimentally)
1 mole of ${ }^{12} \mathrm{C}=\mathrm{N}_{\mathrm{A}}=\mathbf{6 . 0 2 2} \times 10^{23}$ atoms $=12.011 \mathrm{~g}$
Avogadro's number $=\mathbf{N}_{\mathrm{A}}$
- Number of atoms, molecules or particles in one mole

1 mole of $X=6.022 \times 10^{23}$ units of X

- 1 mole $\mathrm{Xe}=6.022 \times 10^{23} \mathrm{Xe}$ atoms
- 1 mole $\mathrm{NO}_{2}=6.022 \times 10^{23} \mathrm{NO}_{2}$ molecules

Molar mass: (\mathcal{M}), defined as the mass (in grams or kilograms) of 1 mole of units (such as atoms or molecules) of a substance
1 mole ${ }^{12} \mathrm{C}$ atoms $=12.00 \mathrm{~g}=6.022 \times 10^{23}$ atoms
1 mole lithium atoms $=6.941 \mathrm{~g}$ of Li

For any element

atomic mass (amu) = molar mass (grams $/ \mathrm{mol}$) from periodic table

Atomic mass of $\mathrm{O}=16 \mathrm{amu}$
Molar mass of $\mathrm{O}=16 \mathrm{~g} / \mathrm{mol}$

One Mole of:

$\mathcal{M}=$ molar mass in $\mathrm{g} / \mathrm{mol}, n=$ mole
$N_{A}=$ Avogadro's number

Two main rules

1- mole=mass/molar mass
$\boldsymbol{n}=\frac{\boldsymbol{m}}{\boldsymbol{\mu}}$
2- number of atoms (or molecules)= moles x Avogadro's \#
$N=n . N_{A}$

Learning Check: Using Molar Mass

 Ex. How many moles of iron (Fe) are in 15.34 g Fe ?- What do we know?
$1 \mathrm{~mol} \mathrm{Fe}=55.85 \mathrm{~g} \mathrm{Fe}$
- What do we want to determine?
$15.34 \mathrm{~g} \mathrm{Fe}=$? MolFe

- Set up ratio so that what you want is on top \& what you start with is on the bottom
$15.34 \mathrm{~g} \mathrm{Fe} \times\left(\frac{1 \mathrm{~mol} \mathrm{Fe}}{55.85 \text { gFe }}\right)=0.2747$ mole Fe

Or using direct way

$n=\frac{m}{\mu}=\frac{15.34}{55.85}=0.2747 \mathrm{~mole} \mathrm{Fe}$
Ex: How many potassium atoms are in 0.551 g of potassium (K) ?

$$
1 \mathrm{~mol} \text { of } \mathrm{K}=39.10 \mathrm{~g} \text { of } \mathrm{K}
$$

$$
N=n \cdot N_{A}=\left(\frac{0.551}{39.10}\right) \cdot\left(6.022 \times 10^{23}\right)=8.49 \times 10^{21} \text { atoms of } \mathrm{K}
$$

Ex: calculate the mass of one atom of $\mathrm{Na}(\mathrm{Na}=23 \mathrm{~g} / \mathrm{mol})$

$$
\begin{gathered}
\boldsymbol{N}=\boldsymbol{n} \cdot \boldsymbol{N}_{\boldsymbol{A}} \\
1=\left(\frac{m}{23}\right) \cdot\left(6.022 \times 10^{23}\right) \\
m=3.82 \times 10^{-23} \mathrm{~g}
\end{gathered}
$$

Molecular mass (or molecular weight) is the sum of the atomic masses (in amu) in a molecule.

For any molecule molecular mass in amu = molar mass in grams

1 molecule of SO_{2} weighs 64.07 amu 1 mole of SO_{2} weighs 64.07 g

Ex How many H atoms are in 72.5 g of $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$?

$$
\begin{gathered}
N=(n)_{\text {molecule }} \cdot N_{A} \cdot(\# \text { of H per molecule }) \\
N=\left(\frac{72.5}{60.09}\right) \cdot\left(6.022 \times 10^{23}\right) \cdot(8)=5.82 \times 10^{24} \mathrm{H} \text { atoms }
\end{gathered}
$$

Formula mass is the sum of the atomic masses (in amu) in a formula unit of an ionic compound.

1 Na 22.99 amu $1 \mathrm{Cl}+35.45 \mathrm{amu}$ NaCl 58.44 amu

For any ionic compound

formula mass (amu) = molar mass (gram $/ \mathrm{mol}$)

> 1 formula unit of $\mathrm{NaCl}=58.44 \mathrm{amu}$ 1 mole of $\mathrm{NaCl}=58.44 \mathrm{~g}$ of NaCl

Do You Understand Formula Mass?

 What is the formula mass of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$?1 formula unit of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$

$$
\begin{array}{lr}
3 \mathrm{Ca} & 3 \times 40.08 \mathrm{~g} / \mathrm{mol} \\
2 \mathrm{P} & 2 \times 30.97 \mathrm{~g} / \mathrm{mol} \\
8 \mathrm{O} & +\quad 8 \times 16.00 \mathrm{~g} / \mathrm{mol} \\
\hline & 310.18 \mathrm{~g} / \mathrm{mol}
\end{array}
$$

Units of grams per mole are the most practical for chemical calculations!

Ex Calculate the mass in grams of FeCl_{3} in $1.53 \times$ 10^{23} formula units. (molar mass $\left.=162.204 \mathrm{~g} / \mathrm{mol}\right)$

$$
N=n . N_{A}
$$

$$
1.53 \times 10^{23}=\left(\frac{m}{162}\right) \times\left(6.022 \times 10^{23}\right)
$$

$$
m=41.21 \mathrm{~g}
$$

Ex Calculate the number of formula units of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in 1.29 moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}$

$$
\begin{gathered}
\mathrm{N}=\mathrm{n} . \mathrm{N}_{\mathrm{A}} \\
N=(1.29) \times\left(6.022 \times 10^{23}\right)=7.77 \times 10^{23} \text { particles } \mathrm{Na}_{2} \mathrm{CO}_{3}
\end{gathered}
$$

Mole-to-Mole Conversion Factors

- Can use chemical formula to relate amour of each atom to amount of compound

- In $\mathrm{H}_{2} \mathrm{O}$ there are 3 relationships:
$-2 \mathrm{~mol} \mathrm{H} \Leftrightarrow 1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$
$-1 \mathrm{molO} \Leftrightarrow 1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$
$-2 \mathrm{molH} \Leftrightarrow 1 \mathrm{molO}$
- Can also use these on atomic scale
- 2 atom $\mathrm{H} \Leftrightarrow 1$ molecule $\mathrm{H}_{2} \mathrm{O}$
- 1 atom $\mathrm{O} \Leftrightarrow 1$ molecule $\mathrm{H}_{2} \mathrm{O}$

Ex Calculate the number of moles of calcium in 2.53 moles of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
2.53 moles of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}=? \mathrm{~mol} \mathrm{Ca}$ $3 \mathrm{~mol} \mathrm{Ca} \Leftrightarrow 1 \mathrm{~mol} \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
$2.53 \overline{\mathrm{mora}_{3}\left(\mathrm{PQ}_{4}\right)_{2}}\left(\frac{3 \mathrm{~mol} \mathrm{Ca}}{1 \mathrm{mot}_{3}\left(\mathrm{PQ}_{4}\right)_{2}}\right)$
$=7.59 \mathrm{~mol} \mathrm{Ca}$

Ex How many g of iron (Fe) are required to use up all of 25.6 g of oxygen atoms (O) to form $\mathrm{Fe}_{2} \mathrm{O}_{3}$?

- mass $\mathrm{O} \rightarrow \mathrm{molO} \rightarrow \mathrm{molFe} \rightarrow$ mass Fe $25.6 \mathrm{~g} \mathrm{O} \rightarrow$? g Fe
$3 \mathrm{~mol} \mathrm{O} \Leftrightarrow 2 \mathrm{~mol} \mathrm{Fe}$
$-n_{O}=\frac{25.6}{16}=1.6 \mathrm{~mol} \mathrm{O}$
$3 \mathrm{molO} \Leftrightarrow 2 \mathrm{~mol} \mathrm{Fe}$
$1.6 \Leftrightarrow$?? mol Fe
$-n_{F e}=(1.6 \times 2) / 3$
$=1.06$
- mass of $\mathrm{Fe}=1.06 \times 55.85=59.2 \mathrm{~g}$ of Fe

Determining Empirical \& Molecular Formulas

- When making or isolating new compounds one must characterize them to determine structure \&

Molecular Formula (MF)

- Exact composition of one molecule
- Exact whole \# ratio of atoms of each element in molecule($\underline{E x}$: MF of glucose is $\mathbf{C}_{\mathbf{6}} \mathbf{H}_{\mathbf{1 2}} \mathrm{O}_{\mathbf{6}}$)

Empirical Formula (EF)

- Simplest ratio of atoms of each element in compound
- Obtained from experimental analysis of compound

Ex EF of glucose is $\mathrm{CH}_{2} \mathrm{O}$
Ex what is the EF of pentane $\left(\mathrm{C}_{5} \mathrm{H}_{12}\right)$
EF is $\mathrm{C}_{5} \mathrm{H}_{12}$ same as molecular formula

Three Ways to Calculate Empirical Formulas

1. From Masses of Elements

Ex. 2.448 g sample of which 1.771 g is Fe and 0.677 g is 0.

2. From Percentage Composition

Ex. 43.64 \% P and 56.36 \% O.

3. From Combustion Data

Given masses of combustion products
Ex. The combustion of a 5.217 g sample of a compound of C, H, and O in pure oxygen gave $7.406 \mathrm{~g} \mathrm{CO}_{2}$ and 4.512 g of $\mathrm{H}_{2} \mathrm{O}$.

Strategy for Determining Empirical Formulas

1. Determine mass in \mathbf{g} of each element
2. Convert mass in \mathbf{g} to moles
3. Divide all quantities by smallest number of moles to get smallest ratio of moles
4. Convert any non-integers into integer numbers.

- Multiply by smallest number to make subscripts in step 3 integers

1. Empirical Formula from Mass Data

Ex: When a 0.1156 g sample of a compound was analyzed, it was found to contain 0.04470 g of $\mathrm{C}, 0.01875 \mathrm{~g}$ of H , and 0.05215 g of N . Calculate the empirical formula of this compound.

Step 1: Calculate moles of each substance

$$
\begin{aligned}
& 0.04470 \mathrm{gG} \times \frac{1 \mathrm{~mol} \mathrm{C}}{12.011 \mathrm{gC}}=3.722 \times 10^{-3} \mathrm{~mol} \mathrm{C} \\
& 0.01875 \mathrm{gH} \times \frac{1 \mathrm{~mol} \mathrm{H}}{1.008 \mathrm{gH}}=1.860 \times 10^{-2} \mathrm{~mol} \mathrm{H} \\
& 0.05215 \mathrm{gN} \times \frac{1 \mathrm{~mol} \mathrm{~N}}{14.0067 \mathrm{gN}}=3.723 \times 10^{-3} \mathrm{~mol} \mathrm{~N}
\end{aligned}
$$

1. Empirical Formula from Mass Data

Step 2: Select the smallest \# of moles.

- The smallest is 3.722×10^{-3} mole

Step 3: Divide all \# of moles by the smallest one Mole ratio Integer ratio

$$
\frac{3.722 \times 10^{-3} \mathrm{molC}}{3.722 \times 10^{-3} \mathrm{molC}}=
$$

- $\mathrm{H}=\frac{1.860 \times 10^{-2} \mathrm{molH}}{3.722 \times 10^{-3} \mathrm{molC}}=$

$$
4.997=5
$$

1.000
$=1$

Empirical formula $=\mathbf{C H}_{5} \mathbf{N}$

1. Empirical Formula from Mass Data

Ex 2: One of the compounds of iron and oxygen, "black iron oxide," occurs naturally in the mineral magnetite. When a 2.448 g sample was analyzed it was found to have 1.771 g of Fe and 0.677 g of O . Calculate the empirical formula of this compound.

1. Calculate moles of each substance

$1.771 \mathrm{gFe} \times \frac{1 \mathrm{~mol} \mathrm{Fe}}{55.485 \mathrm{gFe}}=0.03171 \mathrm{~mol} \mathrm{Fe}$
$0.677 \mathrm{gQ} \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{gQ}}=0.0423 \mathrm{~mol} \mathrm{O}$

1. Empirical Formula from Mass Data

2. Divide both by smallest \#mol to get smallest whole \# ratio.
0.03171 mol Fe

$$
=1.000 \mathrm{Fe}
$$

$$
=\mathrm{Fe}_{1.00} \mathrm{O}_{1.33}
$$

0.0423 mol O

$\overline{0.03171 \mathrm{~mol} \mathrm{Fe}}=1.33 \mathrm{O}$
3-Multiply by smallest number to make subscripts in step 2 integers
$\mathrm{Fe}_{(1.00 \times 3)} \mathrm{O}_{(1.33 \times 3)}=\mathrm{Fe}_{3} \mathrm{O}_{3.99}$
Empirical Formula $=\mathrm{Fe}_{3} \mathrm{O}_{4}$

2. Empirical Formula from \% Composition

$\underline{E x}$:Calculate the empirical formula of a compound whose \% composition data is 43.64 \% P and 56.36 \% O . Step 1: Assume 100 g of compound.

- 43.64 g P

$$
1 \mathrm{~mol} \mathrm{P}=30.97 \mathrm{~g}
$$

- $56.36 \mathrm{~g} \mathrm{O} \quad 1 \mathrm{~mol} \mathrm{O}=16.00 \mathrm{~g}$
$43.64 \mathrm{~g} \cdot \mathrm{R} \times \frac{1 \mathrm{~mol} \mathrm{P}}{30.97 \mathrm{~g} \cdot \mathrm{R}}=1.409 \mathrm{~mol} \mathrm{P}$
$56.36 \mathrm{gO} \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{gQ}}=3.523 \mathrm{~mol} \mathrm{P}$

2. Empirical Formula from \% Composition

Step 2: Divide by smallest number of moles
1.409 mol P
$1.409 \mathrm{molP}=1.000$
3.523 mol O
$1.409 \mathrm{molP}=2.500$
Step 3: Multiple by \mathbf{n} to get smallest integer ratio Here $\mathbf{n}=\mathbf{2}$

P: $1.00 \times 2=2$
O: $2.500 \times 2=5 \quad$ Empirical formula $=P_{2} \mathrm{O}_{5}$

3. Empirical Formulas from Combustion Analysis:

Combustion Analysis

- Compounds containing carbon, hydrogen, \& oxygen, can be burned completely in pure oxygen gas
- Only carbon dioxide \& water are produced

Ex. Combustion of ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+3 \mathrm{O}_{2} \longrightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}
$$

Apparatus for determining the empirical formula of ethanol. The absorbers are substances that can retain water and carbon dioxide, respectively.

Combustion of ethanol
3. Empirical Formulas from Combustion Analysis:

- Carbon dioxide \& water separated \& weighed separately
- All C ends up as CO_{2}
- All H ends up as $\mathrm{H}_{2} \mathrm{O}$
- Mass of \mathbf{C} can be derived from amount of $\mathbf{C O}_{\mathbf{2}}$
- mass $\mathrm{CO}_{2} \rightarrow \mathrm{~mol} \mathrm{CO}_{2} \rightarrow \mathrm{~mol} \mathrm{C} \rightarrow$ mass C
- Mass of \mathbf{H} can be derived from amount of $\mathbf{H}_{\mathbf{2}} \mathbf{O}$
- mass $\mathrm{H}_{2} \mathrm{O} \rightarrow$ mol $\mathrm{H}_{2} \mathrm{O} \rightarrow$ mol $\mathrm{H} \rightarrow$ mass H
- Mass of oxygen is obtained by difference

$$
\text { mass } \mathrm{O}=\text { mass sample }-(\text { mass } \mathrm{C}+\text { mass } \mathrm{H})
$$

Ex. The combustion of a 5.217 g sample of a compound of C, H, and O in pure oxygen gave $7.406 \mathrm{~g} \mathrm{CO}_{2}$ and 4.512 g of $\mathrm{H}_{2} \mathrm{O}$. Calculate the empirical formula of the compound.

	\mathbf{C}	\mathbf{H}	\mathbf{O}	$\mathbf{C O}_{\mathbf{2}}$
Molar mass (g/mol)	12.011	1.008	15.999	44.01

1. Calculate mass of C from mass of CO_{2}. mass $\mathrm{CO}_{\mathbf{2}} \boldsymbol{\rightarrow}$ mole $\mathrm{CO}_{\mathbf{2}} \rightarrow$ mole $\mathrm{C} \rightarrow$ mass C $7.406 \mathrm{gGQ}_{2}\left(\frac{1 \mathrm{mel}_{2}}{44.01 \mathrm{gCQ}_{2}}\right)\left(\frac{1 \mathrm{molC}}{1 \mathrm{~mol} \mathrm{CO}_{2}}\right)\left(\frac{12.011 \mathrm{~g} \mathrm{C}}{1 \mathrm{molC}}\right)$

$$
=2.021 \mathrm{~g} \mathrm{C}
$$

2. Calculate mass of H from mass of $\mathrm{H}_{2} \mathrm{O}$. mass $\mathrm{H}_{\mathbf{2}} \mathrm{O} \rightarrow$ mol $\mathrm{H}_{\mathbf{2}} \mathrm{O} \rightarrow$ mol $\mathrm{H} \rightarrow$ mass H

$$
\begin{gathered}
4.512 \mathrm{gH}_{2} \mathrm{O}\left(\frac{1 \mathrm{molH}_{2} \mathrm{O}}{18.015 \mathrm{gH}_{2} \mathrm{O}}\right)\left(\frac{2 \mathrm{molH}}{1 \mathrm{molH}_{2} \mathrm{O}}\right)\left(\frac{1.008 \mathrm{~g} \mathrm{H}}{1 \mathrm{molH}}\right) \\
=0.5049 \mathrm{~g} \mathrm{H}
\end{gathered}
$$

3. Calculate mass of \mathbf{O} from difference.

Mass $\mathrm{O}=$ total mass-(C mass + H mass)

$$
=5.217 \mathrm{~g}-(2.021 \mathrm{~g} \mathrm{C}+0.5049 \mathrm{~g} \mathrm{H})=2.691 \mathrm{~g} \mathrm{O}
$$

Or we can use the following rule:

mass of element in sample $=\left(\frac{\text { mass of product contain this element }}{\text { it molar mass }}\right) \times(\#$ of element atoms in product) x (atomic mass of element)
\therefore mass of C in $\mathrm{CO}_{2}: \frac{7.406}{44.01} \times 1 \times 12.01=2.02$ mass of C
mass of H in $\mathrm{H}_{2} \mathrm{O}: \frac{4.512}{18} \times 2 \times 1.008=0.504$ mass of H

	C	H	O
MM	12.011	1.008	15.999
g	2.021	0.5049	2.691

4. Calculate mol of each element

$$
\begin{aligned}
& \mathrm{mol} \mathrm{C}=\frac{\mathrm{gC}}{\mathrm{MMC}}=\frac{2.021 \mathrm{~g}}{12.011 \mathrm{~g} / \mathrm{mol}}=0.1683 \mathrm{~mol} \mathrm{C} \\
& \mathrm{~mol} \mathrm{H}
\end{aligned}=\frac{\mathrm{g} \mathrm{H}}{\mathrm{MMH}}=\frac{0.5049 \mathrm{~g}}{1.008 \mathrm{~g} / \mathrm{mol}}=0.5009 \mathrm{~mol} \mathrm{H}
$$

$\mathrm{C}_{\frac{0.1683}{} \mathrm{H}_{0.16009}} \mathrm{O}_{0.1682} \quad \frac{0.1682}{0.1682}$

- Preliminary empirical formula
$-\mathrm{C}_{0.1683} \mathrm{H}_{0.5009} \mathrm{O}_{0.168}=\mathrm{C}_{1.00} \mathrm{H}_{2.97} \mathrm{O}_{1.00}$

5. Calculate mol ratio of each element

Empirical Formula $=\mathrm{CH}_{3} \mathrm{O}$

- Since all values are close to integers, round to

Determining Molecular Formula

$>$ Need molecular mass(molar mass) \& empirical formula
$>$ Calculate ratio of molecular mass to mass predicted by empirical formula \& round to nearest integer

$$
\text { Molecular formula }=\frac{\text { molar mass of unknown }}{\text { molar mass of } E F} \times \mathrm{XEF}
$$

$\left(\frac{\text { molar mass of unknown }}{\text { molar mass of } E F}\right)=\boldsymbol{n}$
Ex. molar mass of Glucose is $180.16 \mathrm{~g} / \mathrm{mol}$
Empirical formula $=\mathrm{CH}_{2} \mathrm{O}$
Empirical formula molar mass $=30.03 \mathrm{~g} / \mathrm{mol}$, find the molecular formula for Glucose .
Molecular formula $=\frac{180.16}{30.03} \times \mathrm{CH}_{2} \mathrm{O}=6 \times \mathrm{CH}_{2} \mathrm{O}$
Molecular formula is $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$

Ex The empirical formula of hydrazine is NH_{2}, and its molecular mass is 32.0. What is its molecular formula Atomic Mass: $\mathrm{N}: 14.007 ; \quad \mathrm{H}: 1.008 ; \quad \mathrm{O}: 15.999$

Solution

Molar mass of $\mathrm{NH}_{2}=(1 \times 14.01)+(2 \times 1.008)=16.017 \mathrm{~g}$
Molecular formula $=\frac{\text { molar mass of unknown }}{\text { molar mass of } E F}$ XEF
$=\frac{32}{16.017} \times \mathrm{NH}_{2}$
$=2 \times \mathrm{NH}_{2}$
Molecular formula : $\quad \mathbf{N}_{2} \mathbf{H}_{4}$

Chemical reactions and chemical equations

A process in which one or more substances is changed into one or more new substances is a chemical reaction.
A chemical equation uses chemical symbols to show what happens during a chemical reaction.

3 ways of representing the reaction of H_{2} with O_{2} to form $\mathrm{H}_{2} \mathrm{O}$

Two hydrogen molecules + One oxygen molecule \longrightarrow Two water molecules $2 \mathrm{H}_{2}$ $+\quad \mathrm{O}_{2}$ \longrightarrow
$2 \mathrm{H}_{2} \mathrm{O}$
reactants \longrightarrow products

How to "Read" Chemical Equations

$$
2 \mathrm{Mg}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{MgO}
$$

2 atoms $\mathrm{Mg}+1$ molecule O_{2} makes 2 formula units MgO
 48.6 grams $\mathrm{Mg}+32.0$ grams O_{2} makes 80.6 g MgO

IS NOT

2 grams $\mathrm{Mg}+1$ gram O_{2} makes 2 g MgO

Stoichiometry Calculations: Amounts of Reactants and Products

 in chemical reaction

Use the fabulous four steps!

1. Write the balanced chemical equation.
2. Convert quantities of known substances into moles.
3. Use coefficients in balanced equation to calculate the number of moles of the sought quantity.
4. Convert moles of sought quantity into the desired units.

Using Balanced Equation to Determine Stoichiometry Ex. What mass of O_{2} will react with 96.1 g of propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ gas, to form gaseous carbon dioxide \& water?

Strategy

1. Write the balanced equation

$$
\mathrm{C}_{3} \mathrm{H}_{8}(g)+5 \mathrm{O}_{2}(g) \rightarrow 3 \mathrm{CO}_{2}(g)+4 \mathrm{H}_{2} \mathrm{O}(g)
$$

2. Assemble the tools
$96.1 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{8} \rightarrow$ moles $\mathrm{C}_{3} \mathrm{H}_{8} \rightarrow$ moles $\mathrm{O}_{2} \rightarrow \mathrm{~g} \mathrm{O}_{2}$
$\checkmark n_{C_{3} H_{8}}=\frac{96.1}{44.1}=2.18 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8}$
$\checkmark 1 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8} \longrightarrow 5 \mathrm{~mol} \mathrm{O}_{2}$
$2.18 \mathrm{~mol} \longrightarrow \quad$??? $\mathrm{mol} \mathrm{O}_{2}$
$\checkmark n_{O_{2}}=\frac{2.18 \times 5}{1}=10.9 \mathrm{~mol} \mathrm{O}_{2}$
\checkmark mass $_{O_{2}}=10.9 \times 32=348.8 \mathrm{~g}$

Ex: Methanol burns in air according to the equation

$$
2 \mathrm{CH}_{3} \mathrm{OH}+3 \mathrm{O}_{2} \longrightarrow 2 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}
$$

If 209 g of methanol are used up in the $\stackrel{\mathrm{m}=\text { co? }}{ }$? what mass of water is produced?
grams $\mathrm{CH}_{3} \mathrm{OH} \longrightarrow$ moles $\mathrm{CH}_{3} \mathrm{OH} \longrightarrow$ moles $\mathrm{H}_{2} \mathrm{O} \longrightarrow$ grams $\mathrm{H}_{2} \mathrm{O}$ \checkmark Balanced equation
$\checkmark n_{\mathrm{CH}_{3} \mathrm{OH}}=\frac{209}{32}=6.53 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{OH}$
$\checkmark n_{H 2 O}$:
$2 \mathrm{CH}_{3} \mathrm{OH} \longrightarrow 4 \mathrm{H}_{2} \mathrm{O}$ (mol ratio)
$6.53 \mathrm{~mol} \longrightarrow$???
$\checkmark n_{\mathrm{H}_{2} \mathrm{O}}=\frac{6.53 \times 4}{2}=13.06$
\checkmark mass $_{\mathrm{H}_{2} \mathrm{O}}=13.06 \times 18=235.08 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$

$\underline{\text { Limiting Reactant }}$

- Reactant that is completely used up in the reaction
- Present in lower \# of moles
- It determines the amount of product produced

Excess reactant

- Reactant that has some amount left over at end
- Present in higher \# of moles

Four Steps to determine the limiting reagent

1. Balanced reaction: Done.
2. Find the mole of each reactant in the reaction
3. Divide the \# of mole of each reactant on it coefficient
4. The one that give the smallest \# in step 3 is the limiting reagent

Ex: For the following reaction $2 \mathrm{NH}_{3}+\mathrm{CO}_{2} \longrightarrow\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}+\mathrm{H}_{2} \mathrm{O}$
If we start with $637.2 \mathrm{~g} \mathrm{NH}_{3}$ and $1142 \mathrm{~g} \mathrm{CO}_{2}$
a) which of the two reactants is the limiting reagent?

1- Balanced reaction $\sqrt{ }$
2- $\mathrm{mol} \mathrm{NH}_{3}=\frac{637.2}{17.03}=37.16$, and $\mathrm{mol} \mathrm{CO}_{2}=\frac{1142}{44}=25.9$
$3-\mathrm{NH}_{3}: 37.16 / 2=18.7 \quad$ (Smallest) $\therefore \mathrm{NH}_{3}$ is the Limiting reagent and $\mathrm{CO}_{2}: 25.9 / 1=25.9\left(\mathrm{CO}_{2}\right.$ is excess $)$
b) Calculate the mass of product $\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$ formed

To find the mass formed of this product, we relate it to the limiting reagent (using mole ratio)
$2 \mathrm{~mol} \mathrm{NH}_{3} \longrightarrow 1 \mathrm{~mol}\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$
$37.16 \mathrm{~mol} \longrightarrow$???? $\mathrm{mol}\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$
$\checkmark \mathrm{mol}\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}=\frac{37.16 \times 1}{2}=18.71 \mathrm{~mol}$
\checkmark mass $\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}=18.71 \times 60.06 \mathrm{~g} / \mathrm{mol}=1124 \mathrm{~g}$ (theoretical yield)
c) How many excess reagent (gram)is left at the end of reaction?

The CO_{2} excess left (left over) $=\left(\right.$ initial mass of $\mathrm{CO}_{2}-$ reacted mass of CO_{2})
$>$ First will find the Reacted mass of CO2 :
$1 \mathrm{~mol} \mathrm{CO} 2 \longrightarrow 2 \mathrm{~mol} \mathrm{NH}_{3} \longrightarrow$
???? $\mathrm{mol} \mathrm{CO} 2 \longleftarrow 37.16 \mathrm{~mol} \mathrm{NH}_{3}$
$\checkmark \mathrm{mol} \mathrm{CO}_{2}=37.16 / 2=18.71$
\checkmark reacted mass of $\mathrm{CO}_{2}=18.71 \times 44=823.4 \mathrm{~g}$
\checkmark The mass left over of $\mathrm{CO}_{2}=$ initial mass - reacted mass $=1142-823.4=319 \mathrm{~g}$

Do You Understand Limiting Reactants?

In a reaction, 124 g of Al are reacted with 601 g of $\mathrm{Fe}_{2} \mathrm{O}_{3}$.

$$
2 \mathrm{Al}+\mathrm{Fe}_{2} \mathrm{O}_{3} \longrightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{Fe}
$$

Calculate the mass of $\mathrm{Al}_{2} \mathrm{O}_{3}$ formed in grams.
Also Limiting reagent can be determine based on the following statement " the limiting reagent will yield the smaller amount of the product"

1. Balanced reaction: $\sqrt{ }$
2. Moles of "given" reactants.

Moles of $\mathrm{Al}=124 \mathrm{~g} / 26.9815 \mathrm{~g} / \mathrm{mol}=4.60 \mathrm{~mol}$
Moles of $\mathrm{Fe}_{2} \mathrm{O}_{3}=601 \mathrm{~g} / 159.6882 \mathrm{~g} / \mathrm{mol}=3.76 \mathrm{~mol}$
3. Moles of "desired" product, $\mathrm{Al}_{2} \mathrm{O}_{3}$.
$2 \mathrm{Al}+\mathrm{Fe}_{2} \mathrm{O}_{3} \longrightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{Fe}$
Moles of $\mathrm{Al}_{2} \mathrm{O}_{3}=\frac{4.60 \mathrm{~mol} \mathrm{Al}}{1} \times \frac{1 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{O}_{3}}{2 \mathrm{~mol} \mathrm{Al}}=2.30 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{O}_{3}$
based on Al
$\begin{aligned} & \text { Moles of } \mathrm{Al}_{2} \mathrm{O}_{3} \\ & \text { based on } \mathrm{Fe}_{2} \mathrm{O}_{3}\end{aligned}=\frac{3.76 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3}}{1} \times \frac{1 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{O}_{3}}{1 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3}}=3.76 \mathrm{~mole} \mathrm{Al}_{2} \mathrm{O}_{3}$
Keep the smaller answer! Al is the limiting reactant.
4. Grams of $\mathrm{Al}_{2} \mathrm{O}_{3}$.

Grams of $\mathrm{Al}_{2} \mathrm{O}_{3}=2.30 \mathrm{~mol} \times 101.9612 \mathrm{~g} / \mathrm{mol}=\mathbf{2 3 5} \mathbf{g}$

Reaction Yield

Theoretical Yield is the amount of product that would result if all the limiting reagent reacted.(calculated)

Actual Yield is the amount of product actually obtained from a reaction(experimentally).
-How much is obtained in mass units or in moles

- Actual yield usually is less than theoretical yield

Percent yield Relates the actual yield to the theoretical yield, It is calculated as:

$$
\% \text { Yield }=\frac{\text { Actual Yield }}{\text { Theoretical Yield }} \times 100
$$

Ex. If a cookie recipe predicts a yield of 36 cookies and yet only 24 are obtained, what is the \% yield?

$$
\text { percentage yield }=\left(\frac{24}{36}\right) \times 100=67 \%
$$

Ex When $18.1 \mathrm{~g} \mathrm{NH}_{3}$ and 90.4 g CuO are reacted, the theoretical yield is 72.2 g Cu . The actual yield is 58.3 g Cu . What is the percent yield?
$2 \mathrm{NH}_{3}(g)+3 \mathrm{CuO}(s) \rightarrow \mathrm{N}_{2}(g)+3 \mathrm{Cu}(s)+3 \mathrm{H}_{2} \mathrm{O}(g)$

$$
\% \text { yield }=\frac{58.3 \mathrm{~g} \mathrm{Cu}}{72.2 \mathrm{~g} \mathrm{Cu}} \times 100 \%=80.7 \%
$$

Ex A chemist set up a synthesis of solid phosphorus trichloride by mixing 12.0 g of solid phosphorus with 35.0 g chlorine gas and obtained 42.4 g of solid phosphorus trichloride. Calculate the percentage yield of this compound. Analysis:

Write balanced equation

$$
2 \mathrm{P}(s)+3 \mathrm{Cl}_{2}(g) \longrightarrow 2 \mathrm{PCl}_{3}(s)
$$

Solution:

$$
2 \mathrm{P}(s)+3 \mathrm{Cl}_{2}(g) \longrightarrow 2 \mathrm{PCl}_{3}(s)
$$

1. Determine Limiting Reactant

mol of $\mathrm{P}=12 / 30.97=0.39 / 2=0.19$
mol of $\mathrm{Cl}_{2}=35 / 70.9=0.49 / 3=0.16$ (smallest) $\mathbf{C l}_{2}$ is limiting reagent
2. Determine Theoretical Yield (mass of product PCl_{3}) $3 \mathrm{Cl}_{2}: 2 \mathrm{PCl}_{3}$
$\checkmark \mathrm{mol} \mathrm{PCl} 3=(0.49 \times 2) / 3=0.33 \mathrm{~mol} \mathrm{PCl}_{3}$
\checkmark Mass $\mathrm{PCl}_{3}=0.33 \times 137.32=44.9 \mathrm{~g} \mathrm{PCl}_{3}$ (theoretical yield)
3. Determine Percentage Yield

- Actual yield $=42.4 \mathrm{~g}$
percentage yield $=\left(\frac{42.4 g \text { PCl3 }}{44.9 g \text { PCl3 }}\right) \times \mathbf{1 0 0}=\mathbf{9 4 . 4 3} \%$

Stoichiometry Summary

