Ch12: physical properties of solution

Solution:1.solvent (مذيب)
2.solute(مذاب)

1. Molarity (M)
$\mathrm{M}=$ mole Solute/Volume Solution
Mole = mass / molar mass
$2 \mathrm{M} \mathrm{HCl}=2 \mathrm{moleHCl} / 1 \mathrm{~L}$ solution
$11 \mathrm{M} \mathrm{HCl}=11 \mathrm{moleHCl} / 1 \mathrm{~L}$ solution
2. Molality (m)
$m=$ mole of solute/ Mass Solvent. \quad Mass Solvent $=\mathrm{Kg}$
$0.1 \mathrm{~m} \mathrm{HCl}=0.1 \mathrm{~mole} \mathrm{HCl} / 1 \mathrm{Kg}$ Solvent
3. Mole Factor (X) (الكسر المولي)
$A+B$ in Solution ($A=2$ mole, $B=5$ mole)
$X A=$ mole $A /$ moleA+moleB
$X A=2 / 2+5=2 / 7$
$X B=5 / 2+5=5 / 7$
$X A+X B=1$

Physical properties of solution:
(Depend on mole of Solute)

1. Elevation for Boling points
$\Delta T=K b^{*} m$
$\Delta \mathrm{T}=\mathrm{T}$ solution- T solvent pure
Kb= ثابت (معطى).
Mole=mass / molar mass
$\mathrm{m}=$ molality ($\mathrm{m}=$ mole of solute/ Mass Solvent)

Boiling Point of solution always Higher than pure solvent
2. Depression in freezing point:
$\Delta T f=-K f * m$
$\triangle T f=T$ solution- T solvent pure

Kf= ثابت
3. Depression in vapor solutions

Raoul's low.
1 atm $=760$ torr $=760 \mathrm{Hgmm}$
Vapor pressure of solution, P sol, equals product of mole fraction of solvent(X solvent)and its vapor pressure when pure (P solvent)
$P A=X A * P ̊$
$\mathrm{PA}=$ vapor pressure solution
$X A=$ mole solvent/ mole solvent + mole solute $=$ mole fraction of the solvent
${ }^{\circ} \mathrm{B} A=$ vapor pressure solvent pure
$\triangle P=X$ (solute) $* P^{\circ}$ (Solvent)
$\rightarrow P_{\text {Sol vent - P Solution }}^{0}$
$\mathrm{P}=$ change of Vapor pressure solvent
4. Osmatic pressure: الضغط الاسموزي

Osmotic Membrane: Semipermeable membrane that lets only solvent molecules through

الخاصية الاسموزية: انتقال الماء من التركيز الأقل للمو اد الذائبه للتركيز الأعلى من المواد الذائبه
$\begin{array}{ll}\mathrm{PV}=\mathrm{nRT} & \mathrm{T}=\mathrm{C}+273 \text { (كلڤ) } \\ \mathrm{R}=0.0821 \mathrm{~atm}^{*} \mathrm{~L} / \mathrm{mol}^{*} \mathrm{~K}\end{array}$

MV=nRT
$\pi=M R T \quad M=n / V$

1. Isotonic solution

2. Hypotonic solution.
 Shrink and dehydrate.
3. Hyprtonic solution.

 Swelling and burst.

- Colligative properties for electrolyte solution

Vant haff: (i) $i=2$
Van't haff factore is equivalent to percent ionization

FeCl3 =4i.	$\mathrm{MgCl} 2=3 \mathrm{i}$.	$\mathrm{HCl}=2 \mathrm{i}$
$\mathrm{C} 6 \mathrm{H} 12 \mathrm{O} 6=\mathrm{i}$.	$\mathrm{NaOH}=2 \mathrm{i}$.	$\mathrm{NaNO}=2 \mathrm{i}$
$\mathrm{MgSO} 4=2 \mathrm{i}$		

(OH,NO3,SO4,NH4,CI)=1i

Ion pairing (تزاوج الايونات)

Why i experimantel less than i expected ?
Because of Ion pairing

> 1. Elevation for boiling points:
> $\mathbf{D T}=\mathrm{Kb} \mathrm{Kb}^{*}$
2. Depression in freezing points: $\Delta T=-i K f * m$
3. Depression in vapor pressure :
$P A=X A * P B A$
$L \frac{\text { mole solvent }}{\text { mole solvent + Live) mole solute }}$
4. Osmatic pressure:

$$
\pi V=i n R T .
$$

Ion pairing.
(س)Which one of the following solution have hair osmatic pressure:
A. 0.2 molar NaCl
B. 0.2 molar. C 6 H 12 O 6
C. 0.2 molar. FeCl 3
D. 0.2 molar. Na 2 SO 4

Permeable membrane that lets only solvent molecules through is Osmotic Membrane ?

False

Calculate the boiling piont (c) of solution by dissolving 30 g of sucrose have 0.088 mole in 200 g of $\mathrm{H} 2 \mathrm{O}(\mathrm{Kb}=0.51)$ (TB.p $\mathrm{H} 2 \mathrm{O}=100)$?

جواب : 100.21

Calculate the boiling piont (c) of solution by dissolving 56 g of sucrose (C 12 H 22 O 12) have in 300 g of $\mathrm{H} 2 \mathrm{O}(\mathrm{Kb}=0.47)(\mathrm{TB} . \mathrm{p} \mathrm{H} 2 \mathrm{O}=100)(\mathrm{Mm} \mathrm{C12H22O12=342)}$?

$$
\text { جواب : } 100.26
$$

What mass of ethylene gly (anti freezing) ($\mathrm{Mm} \mathrm{HCOCH} 2 \mathrm{OH}=62.1$) add to 12 Kg H 2 O to produce solution that freezss at(-33.5 C)? ($\mathrm{Kf}=1.95$) ($\mathrm{Tf} \mathrm{H} 2 \mathrm{O}=0$)
12802.2 gram : الجواب

Ex-solution was made by mixing 20 g ethanol ($\mathrm{Mm}=46$) with $100 \mathrm{~g} \mathrm{H} 2 \mathrm{O}(\mathrm{MM}=18)$, calculate the vaper pressure of this solution of 70 C (vapor pressure of pure water at $70 \mathrm{C}=233.7$ torr) ?
216.73 torr : جو
0.285 atm
calculate the mass of C 3 H 8 O 2 , that must be add too $0,5 \mathrm{Kg} \mathrm{H} 2 \mathrm{O}$ to decrease the vapor pressure of $\mathrm{H} 2 \mathrm{O} 4.6^{\circ}$ torr ${ }^{\text {ăt }} 40 \mathrm{C}(\mathrm{P} \mathrm{H} 2 \mathrm{O}=55.3$ torr $)(\mathrm{Mm} \mathrm{C}=12, \mathrm{O}=16, \mathrm{H}=1)$?

الجواب : 191.5 g

Calculate Molar mass of protein mass $=1^{*} 10^{\wedge}-3$ in 1 ml solution the osmatic pressure $=1.12$, $\mathrm{T}=25 \mathrm{C}$ R=0.0821 ?
1.66*10^4 g/mol: الجواب

Predict the vapor pressure of solution prodused by mixing 35 g solid $\mathrm{Na} 2 \mathrm{SO}(\mathrm{Mm}=172)$ with $175 \mathrm{~g} \mathrm{H} 2 \mathrm{O}(\mathrm{Mm}=18)$ at $25 \mathrm{C}\left(\mathrm{p}^{0} \mathrm{H} 2 \mathrm{O}=23.7\right.$ torr $)$.

22torr : الجواب
(س)The osmatic pressure of 0.1 M solution of $\mathrm{Fe}(\mathrm{NH} 4) 2(\mathrm{SO} 4) 2$ at 25 C is 10.8 atm , compare the expected and experimental for (i)
expected=5 : الجواب
Experimental $=4.4$.
(س)When 2.36 g of a nonvolatile salute dissolved in 100 g of solvent, the largest change in freezing point will achived When the solvents is :
1.tret-butnol $\mathrm{Kf}=9.1$
2. acetic acid $\mathrm{Kf}=3.9$
3.benzene $\mathrm{Kf}=5.12$
4.All are expected to have the same freezing point
(w)calculate the freezing point of a solution Contaning 20 g of KCl and 2200 g H 2 O . (Mm $\mathrm{KCl}=74.55$) The Molal freezing point depression constant ($\mathrm{Kp}=1.86$)
1.+0.23 C
2. -0.23 C
3. -0.45 C
4. -1.23 C
5. +0.45 C
(س)An aqucous solution has normal boiling point 102 C , what is the freezing point of this solution [for water $\mathrm{Kb}=0.51 \mathrm{Kf}=1.86$]

1. -3.6 C
2. -7.3 C
3. 0.55 C
4. -2.0
(س) When 0.5 g of unkown nonelectrolyte compound is dissolved in 10 g of camphor ($\mathrm{Kf}=40$) freezing point of the solution lower than that of pure camphor If $\mathrm{T}=4.43$, calculate the unkown compound Mm ?
$1.55 .4 \mathrm{~g} / \mathrm{mol}$
$2.0 .451 \mathrm{~g} / \mathrm{mol}$
$3.3 .54 \mathrm{~g} / \mathrm{mol}$
$4.454 .5 \mathrm{~g} / \mathrm{mol}$
(س)At a given temperature the Vapor pressure of benzene and toluene are 183 mmHg and 59.2 mmHg , calculated the total pressure over a solution of benzene and toluene (X benzene $=0.56$).
1.102 mmHg
2.242 mmHg
3.121 mmHg
4.129 mmHg

Glycerin, C 3 H 8 O 3 , is a nonvolatile nonelectrolyte with a density of $1.26 \mathrm{~g} / \mathrm{mL}$ at $25^{\circ} \mathrm{C}$. Calculate the change in vapor pressure as $25^{\circ} \mathrm{C}$ of a solution made by adding 50.0 mL of glycerin to 500.0 mL of water. The vapor pressure of pure water at $25^{\circ} \mathrm{C}$ is 23.8 torr?

الجواب : 23.2

The vapor pressure of 2-methylhexane($\mathrm{Mm}=100.17$) is 37.986 torr at $15^{\circ} \mathrm{C}$. What would be the pressure of the mixture of 78.0 g 2 -methylhexaneand 15 g naphthalene ($\mathrm{Mm}=128.2$), which is nearly non-volatile at this temperature?

Consider a mixture of benzene, C 6 H 6 , and toluene, C 7 H 8 , containing 1.0 mol benzene and 2.0 mol toluene. At $20^{\circ} \mathrm{C}$, the vapor pressures of the pure substances are:
P° benzene $=75$ torr $\quad \mathrm{P}^{\circ}$ toluene $=22$ torr
40 torr : الجواب
n -hexane and n -heptane are miscible in a large degree and both volatile. If the vapor pressure of pure hexane is 151.28 mm Hg , and heptane is 45.67 at 25°, which equation can be used to determine the mole fraction of hexane in the mixture if the mixture's vapor pressure is 145.5 mm Hg ?
A. $\mathrm{X}(151.28 \mathrm{mmHg}) 145.5 \mathrm{mmHg}$
B. $X(151.28 \mathrm{mmHg})+(X)(45.67 \mathrm{~mm} \mathrm{Hg}) 145.5 \mathrm{mmHg}$
C. $X(151.28 \mathrm{mmHg})+(1-X)(45.67 \mathrm{~mm} \mathrm{Hg})=145.5 \mathrm{~mm} \mathrm{Hg}$
D. None of these

The vapor pressure of 2-methylheptane ($\mathrm{Mm}=114$) is 233.95 torr at $55^{\circ} \mathrm{C}$. 3-ethylpentane $(M m=100)$ has a vapor pressure of 207.68 at the same temperature. What would be the pressure of the mixture of 78.0 g 2 -methylheptane and 15 g 3 -ethylpentane?

230 torr : الجواب

Estimate the freezing point of a permanent type of antifreeze solution made up of 100.0 g ethylene glycol, C2H6O2, ($\mathrm{MM}=62.07$) and $100.0 \mathrm{~g} \mathrm{H} 2 \mathrm{O}(\mathrm{MM}=18.02)$?

- 30° C: :

When 0.25 g of an unknown organic compound is added to 25.0 g of cyclohexane, the freezing point of cyclohexane is lowered by $1.6^{\circ} \mathrm{C}$. Kf for the solvent is $20.2^{\circ} \mathrm{C} \mathrm{m}^{\wedge}-1$. Determine the molar mass of the unknown?
A. $505 \mathrm{~g} / \mathrm{mol}$
B. $32 \mathrm{~g} / \mathrm{mol}$
C. $315 \mathrm{~g} / \mathrm{mol}$
D. $126 \mathrm{~g} / \mathrm{mol}$
E. $\quad 130 \mathrm{~g} / \mathrm{mol}$

A 2.00 g sample of a large biomolecule was dissolved in 15.0 g of CCI4. The boiling point of this solution was determined to be $77.85^{\circ} \mathrm{C}$. Calculate the molar mass of the biomolecule. For CCl 4 , the $\mathrm{Kb}=5.07 \mathrm{~b}^{\circ} \mathrm{C} / \mathrm{m}$ and $\mathrm{BPCCl} 4=76.50^{\circ}$

Eye drops must be at the same osmotic pressure as the human eye to prevent water from moving into or out of the eye. A commercial eye drop solution is 0.327 M in electrolyte particles. What is the osmotic pressure in the human eye at $25^{\circ} \mathrm{C}$?

$$
8.00 \text { atm : الحواب }
$$

The osmotic pressure of an aqueous solution of certain protein was measured to determine its molar mass. The solution contained 3.50 mg of protein in sufficient $\mathrm{H}_{2} \mathrm{O}$ to form 5.00 mL of solution. The measured osmotic pressure of this solution was 1.54 torr at $25^{\circ} \mathrm{C}$. Calculate the molar mass of the protein?
الجواب: 8.45*10^3 g/mol

A solution of D5W, 5\% dextrose (C 6 H 1206) in water is placed into the osmometer shown at right. It has a density of $1.0 \mathrm{~g} / \mathrm{mL}$. The surroundings are filled with distilled water. What is the expected osmotic pressure at $25^{\circ} \mathrm{C}$?

$$
\text { الجواب : } 7 \text { atm }
$$

Suppose that your tap water has 250 ppb (ppb 1/1,000,000,000 or $1 \times 10-9$) of dissolved H 2 S , and that its density is about $1.0 \mathrm{~g} / \mathrm{mLWhat}$ is its osmotic pressure at $25^{\circ} \mathrm{C}$? $\mathrm{MM}: \mathrm{H}_{2} \mathrm{~S} 34.076$
A. 0.00058 atm
B. 0.064 atm
C. 0.059 atm
D.0.00018 atm

In preparing pasta, 2 L of water at $25^{\circ} \mathrm{C}$ are combined with about 15 g salt ($\mathrm{NaCl}, \mathrm{MM}=$ $58.44 \mathrm{~g} / \mathrm{mol}$) and the solution brought to a boil. What is the expected boiling point of the water? ($\mathrm{Kb}=0.51$) (B.b $\mathrm{H} 20=100)$
الجواب : T=100.1 C

Suppose you run out of salt. What mass of sugar ($\mathrm{C} 12 \mathrm{H} 22 \mathrm{O} 11, \mathrm{MM}=342.30 \mathrm{~g} / \mathrm{mol})$ added to 2 L of water would raise the temperature of water by $0.10^{\circ} \mathrm{C}$? ($\mathrm{Kb} \mathrm{H} 2 \mathrm{O}=100$)
الجواب : g g
(س)Which of the following liquids will have the lowest freezing point?
1.pure H 2 O
2. aqueous C 6 H 12 O 6 (1.6m)
3. aqueous $\mathrm{KF}(0.5 \mathrm{~m})$
4. aqueous C 12 H 22 O 11 (0.60 m)
5. aqueous F̌el3 (0.24m)

