

Chapter 2: Alkanes and Cycloalkanes: Conformational and Geometric Isomers

Types of Hydrocarbons

Hydrocarbons are compounds that only contain C and H atoms.

Structure of Alkanes

Alkanes are saturated hydrocarbons, that is they contain the maximum number of H atoms possible for the number of C atoms present.

The generic formula for an alkane is: $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2}$

This means every C atom is sp^{3} hybridized with bond angles of $\sim 109.5^{\circ}$

Structure of Alkanes (cont'd)

Alkanes can come in two forms, normal (or linear) and branched. Branched alkanes can have branched branches. Therefore the number of isomers possible growths quickly

Normal, unbranched (or linear)

branched

Structure of Alkanes (cont'd)

Nomenclature of Organic Compounds

A. Common names: In the early days of organic chemistry, each new compound was given a name that was usually based on its source or use.

B. IUPAC : \rightarrow (Rules)

The IUPAC name of any compound contains $\mathbf{3}$ parts :

IUPAC name $=$ Prefix + parent + suffix

3 - Prefix :What and where substituents.
Parent (Root) : longest chain

```
amL voef
```


2- Suffix : functional group.

Table 2.1 Names and Formulas of the First Ten Unbranched Alkanes

Name	Number of carbons	Molecular formula	Structural formula	Number of structural isomers
methane	1	CH_{4}	CH_{4}	1
ethane	2	$\mathrm{C}_{2} \mathrm{H}_{6}$	$\mathrm{CH}_{3} \mathrm{CH}_{3}$	1
propane	3	$\mathrm{C}_{3} \mathrm{H}_{8}$	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$	1
butane	4	$\mathrm{C}_{4} \mathrm{H}_{10}$	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	2
pentane	5	$\mathrm{C}_{5} \mathrm{H}_{12}$	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}$	3
hexane	6	$\mathrm{C}_{6} \mathrm{H}_{14}$	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}$	5
heptane	7	$\mathrm{C}_{7} \mathrm{H}_{16}$	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}_{3}$	9
octane	8	$\mathrm{C}_{8} \mathrm{H}_{18}$	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}_{3}$	18
nonane	9	$\mathrm{C}_{9} \mathrm{H}_{20}$	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{CH}_{3}$	35
decane	10	$\mathrm{C}_{10} \mathrm{H}_{22}$	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{CH}_{3}$	75

Note: The repeating group is (-CH2-) is Methylene group

IUPAC Rules for Naming Alkanes

1. First identify the longest continuous chain (parent name)

2,2,4-trimethylpentane not
2,4,4-trimethylpentane because $2<4$

6-ethyl-3,4-dimethyloctane not
3-ethyl-5,6-dimethyloctane because $4<5$
2. Number the chain in the direction that gives the substituent as low a number as possible
not

2-methylpentane not
4-methylpentane

3-ethylhexane not
4-ethylhexane

4-propyloctane ukelus, réji
4-propyloctane
not
5-propyloctane

Note: If there are two equally long continuous chains, select the one with the most branches. For example:

If there is a branch equidistant from each end of the longest chain, begin numbering nearest to a third branch

2,3,6-trimethylheptane

2,5,6-trimethylheptane

- How to name a substituent?
- It can be a branch In the chain
- A branch (alkyl substituent): is (Alkane - H)

Replace "ane" of alkane with "yl.
$\mathrm{CH}_{4} \rightarrow$ Methane
$\mathrm{CH}_{4}-\mathrm{H}$
$\xrightarrow{\mathrm{CH}_{4}-\mathrm{H} \rightarrow \text { athane }} \mathrm{CH} \rightarrow$ Methyl
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}-$ propyl group
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$ butyl group

methyl group ethyl group
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$ pentyl group

R-
any alkyl group
-There are two propyl Groups
Structural sie
isomers

-There are Four Butyl Groups

