

Chemical Equilibrium

Chapter 14

Chapter Outline

14.1 The Concept of Equilibrium and the Equilibrium Constant
14.2 Writing Equilibrium

Constant Expressions
14.3 The Relationship Between

Chemical Kinetics and Chemical Equilibrium
14.4 What Does the Equilibrium Constant Tell Us?
14.5 Factors that Affect Chemical Equilibrium

Equilibrium is a state in which there are no observable changes as time goes by.

Chemical equilibrium is achieved when:

- the rates of the forward and reverse reactions are equal and
- the concentrations of the reactants and products remain constant

Physical equilibrium

$$
\mathrm{H}_{2} \mathrm{O}_{(\cap)} \rightleftarrows \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

Chemical equilibrium
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftarrows 2 \mathrm{NO}_{2}(\mathrm{~g})$

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftarrows 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

Start with NO_{2}

Start with $\mathrm{N}_{2} \mathrm{O}_{4}$

Start with $\mathrm{NO}_{2} \& \mathrm{~N}_{2} \mathrm{O}_{4}$

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display
constant

$$
\begin{gathered}
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftarrows 2 \mathrm{NO}_{2}(\mathrm{~g}) \\
K=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]}=4.63 \times 10^{-3} \\
\mathrm{aA}+b \mathrm{~B} \\
K=\frac{\mathrm{CC}+d \mathrm{D}}{\left.[\mathrm{~A}]^{d}[\mathrm{D}]^{d}\right]^{b}} \\
\\
\text { Law of Mass Action } \\
\end{gathered}
$$

$$
K=\frac{[\mathrm{C}]^{c}[\mathrm{D}]^{d}}{[\mathrm{~A}]^{2}[\mathrm{~B}]^{b}} \quad a \mathrm{~A}+b \mathrm{~B} \rightleftarrows c \mathrm{C}+d \mathrm{D}
$$

Equilibrium Will

$$
\begin{array}{ll}
K \gg 1 & \text { Lie to the right } \\
K \ll 1 & \text { Lie to the left }
\end{array}
$$

Favor products
Favor reactants

Homogenous equilibrium applies to reactions in which all reacting species are in the same phase.

$$
\begin{gathered}
\mathrm{N}_{2} \mathrm{O}_{4}(g) \rightleftarrows 2 \mathrm{NO}_{2}(g) \\
K_{c}=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]} \quad K_{p}=\frac{P_{\mathrm{NO}_{2}}^{2}}{P_{\mathrm{N}_{2} \mathrm{O}_{4}}} \\
\text { In most cases } \\
K_{c} \neq K_{p} \\
a \mathrm{~A}(g)+b \mathrm{~B}(g) \rightleftarrows c \mathrm{C}(g)+d \mathrm{D}(g) \\
K_{p}=K_{c}(R T)^{\Delta n}
\end{gathered}
$$

$\Delta n=$ moles of gaseous products - moles of gaseous reactants

$$
=(c+d)-(a+b)
$$

Homogeneous Equilibrium

$$
\mathrm{CH}_{3} \mathrm{COOH}(a q)+\mathrm{H}_{2} \mathrm{O}\left(\Lambda \rightleftarrows \mathrm{CH}_{3} \mathrm{COO}^{-}(a q)+\mathrm{H}_{3} \mathrm{O}^{+}(a q)\right.
$$

$$
K_{c}^{\prime}=\frac{\left[\mathrm{CH}_{3} \mathrm{COO}-\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]} \quad\left[\mathrm{H}_{2} \mathrm{O}\right]=\text { constant }
$$

$$
K_{c}=\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}=K_{c}^{\prime}\left[\mathrm{H}_{2} \mathrm{O}\right]
$$

General practice not to include units for the equilibrium constant.

Example 15.1

Write expressions for K_{c}, and K_{p} if applicable, for the following reversible reactions at equilibrium:
(a) $\mathrm{HF}(a q)+\mathrm{H}_{2} \mathrm{O}(\Lambda) \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{F}^{-}(a q)$
(b) $2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \rightleftarrows 2 \mathrm{NO}_{2}(g)$
(c) $\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{aq}) \rightleftarrows \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(a q)+\mathrm{H}_{2} \mathrm{O}(\Lambda)$

Example 15.1

Strategy

Keep in mind the following facts: (1) the K_{P} expression applies only to gaseous reactions and (2) the concentration of solvent (usually water) does not appear in the equilibrium constant expression.

Example 15.1

Solution

(a) Because there are no gases present, K_{P} does not apply and we have only K_{c}.

$$
K_{\mathrm{c}}^{\prime}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{F}^{-}\right]}{[\mathrm{HF}]\left[\mathrm{H}_{2} \mathrm{O}\right]}
$$

HF is a weak acid, so that the amount of water consumed in acid ionizations is negligible compared with the total amount of water present as solvent. Thus, we can rewrite the equilibrium constant as

$$
K_{\mathrm{c}}=\frac{\left[\mathrm{H}_{3} \mathbf{O}^{+}\right]\left[\mathrm{F}^{-}\right]}{[\mathrm{HF}]}
$$

(b)

$$
K_{\mathrm{c}}=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right]} \quad K_{\mathrm{p}}=\frac{P_{\mathrm{NO}_{2}}^{2}}{P_{\mathrm{NO}}^{2} P_{\mathrm{O}_{2}}}
$$

(c) The equilibrium constant K_{c}^{\prime} is given by

$$
K_{\mathrm{c}}^{\prime}=\frac{\left[\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]}
$$

Because the water produced in the reaction is negligible compared with the water solvent, the concentration of water does not change. Thus, we can write the new equilibrium constant as

$$
K_{\mathrm{c}}=\frac{\left[\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]}
$$

The equilibrium constant K_{P} for the decomposition of phosphorus pentachloride to phosphorus trichloride and molecular chlorine

$$
\mathrm{PCl}_{5}(g) \rightleftarrows \mathrm{PCl}_{3}(g)+\mathrm{Cl}_{2}(g)
$$

is found to be 1.05 at $250^{\circ} \mathrm{C}$. If the equilibrium partial pressures of PCl_{5} and PCl_{3} are 0.875 atm and 0.463 atm, respectively, what is the equilibrium partial pressure of Cl_{2} at $250^{\circ} \mathrm{C}$?

Example 15.2

Strategy

The concentrations of the reacting gases are given in atm, so we can express the equilibrium constant in K_{p}. From the known K_{P} value and the equilibrium pressures of PCl_{3} and PCl_{5}, we can solve for $P_{\mathrm{Cl}_{2}}$.

Example 15.2

Solution

First, we write K_{P} in terms of the partial pressures of the reacting species

$$
K_{\mathrm{p}}=\frac{P_{\mathrm{PCl}_{3}} P_{\mathrm{Cl}_{2}}}{P_{\mathrm{PCl}_{5}}}
$$

Knowing the partial pressures, we write

$$
1.05=\frac{(0.463)\left(P_{\mathrm{Cl}_{2}}\right)}{(0.875)}
$$

or

$$
P_{\mathrm{C}_{2}}=\frac{(1.05)(0.875)}{(0.463)}=\mathbf{1 . 9 8} \mathbf{~ a t m}
$$

Example 15.2

Check

Note that we have added atm as the unit for $P_{\mathrm{Cl}_{2}}$.

Example 15.3

Methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ is manufactured industrially by the reaction

$$
\mathrm{CO}(g)+2 \mathrm{H}_{2}(g) \rightleftarrows \mathrm{CH}_{3} \mathrm{OH}(g)
$$

The equilibrium constant (K_{c}) for the reaction is 10.5 at $220^{\circ} \mathrm{C}$. What is the value of K_{P} at this temperature?

Example 15.3

Strategy

The relationship between K_{c} and K_{P} is given by Equation (15.5). What is the change in the number of moles of gases from reactants to product? Recall that
$\Delta n=$ moles of gaseous products - moles of gaseous reactants

What unit of temperature should we use?

Example 15.3

Solution

The relationship between K_{c} and K_{P} is

$$
K_{P}=K_{\mathrm{c}}(0.0821 T)^{\Delta n}
$$

Because $T=273+220=493 \mathrm{~K}$ and $\Delta n=1-3=-2$, we have

$$
\begin{gathered}
K_{P}=(10.5)(0.0821 \times 493)^{-2} \\
=6.41 \times 10^{-3}
\end{gathered}
$$

Example 15.3

Check

Note that K_{p}, like K_{c}, is a dimensionless quantity. This example shows that we can get a quite different value for the equilibrium constant for the same reaction, depending on whether we express the concentrations in moles per liter or in atmospheres.

Heterogenous equilibrium applies to reactions in which reactants and products are in different phases.

$$
\left.\begin{array}{c}
\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftarrows \mathrm{CaO}(\mathrm{ss})+\mathrm{CO}_{2}((g)) \\
K_{c}^{\prime}=\frac{[\mathrm{CaO}]\left[\mathrm{CO}_{2}\right]}{\left[\mathrm{CaCO}_{3}\right]} \\
\left.\begin{array}{c}
{[\mathrm{CaCO}} \\
3
\end{array}\right]=\text { constant } \\
{[\mathrm{CaO}]=\text { constant }}
\end{array}\right] \begin{array}{cc}
K_{c}=P_{\mathrm{CO}_{2}}
\end{array}
$$

The concentration of solids and pure liquids are not included in the expression for the equilibrium constant.
$\mathrm{CaCO}_{3}(s) \rightleftarrows \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$

$P_{\mathrm{CO}_{2}}$ does not depend on the amount of CaCO_{3} or CaO

Example 15.4

Consider the following heterogeneous equilibrium:

$$
\mathrm{CaCO}_{3}(s) \rightleftarrows \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)
$$

At $800^{\circ} \mathrm{C}$, the pressure of CO_{2} is 0.236 atm . Calculate (a) K_{P} and (b) K_{c} for the reaction at this temperature.

Example 15.4

Strategy

Remember that pure solids do not appear in the equilibrium constant expression. The relationship between K_{P} and K_{c} is given by Equation (15.5).

Solution

(a) Using Equation (15.8) we write

$$
\begin{gathered}
K_{P}=P_{\mathrm{CO}_{2}} \\
=0.236
\end{gathered}
$$

Example 15.4

(b) From Equation (15.5), we know

$$
K_{P}=K_{\mathrm{c}}(0.0821 T)^{\Delta n}
$$

In this case, $T=800+273=1073 \mathrm{~K}$ and $\Delta n=1$, so we substitute these values in the equation and obtain

$$
\begin{gathered}
0.236=K_{\mathrm{c}}(0.0821 \times 1073) \\
K_{\mathrm{c}}=2.68 \times 10^{-3}
\end{gathered}
$$

$$
\mathrm{A}+\mathrm{B} \rightleftarrows \mathscr{C}+\varnothing \subset \quad K_{c} \quad K_{c}=\frac{[\mathrm{C}][\mathrm{D}]}{[\mathrm{A}][\mathrm{B}]} \quad K_{c}^{\prime \prime}=\frac{[\mathrm{E}][\mathrm{F}]}{[\mathrm{C}][\mathrm{D}]}
$$

$$
\mathscr{C}^{\prime}+\varnothing \overline{\mathrm{E}}+\mathrm{F} \quad K_{c}^{\prime \prime}
$$

$$
\mathrm{A}+\mathrm{B} \rightleftarrows \mathrm{E}+\mathrm{F} \quad K_{c}
$$

$$
K_{c}=\frac{[\mathrm{E}][\mathrm{F}]}{[\mathrm{A}][\mathrm{B}]}
$$

$$
K_{c}=K_{c}^{\prime} \times K_{c}^{\prime \prime}
$$

If a reaction can be expressed as the sum of two or more reactions, the equilibrium constant for the overall reaction is given by the product of the equilibrium constants of the individual reactions.

$$
\begin{array}{ll}
\mathrm{N}_{2} \mathrm{O}_{4}(g) \rightleftarrows 2 \mathrm{NO}_{2}(g) & 2 \mathrm{NO}_{2}(g) \rightleftarrows \mathrm{N}_{2} \mathrm{O}_{4}(g) \\
K=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]}=4.63 \times 10^{-3} & K^{\prime}=\frac{\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]}{\left[\mathrm{NO}_{2}\right]^{2}}=\frac{1}{K}=216
\end{array}
$$

When the equation for a reversible reaction is written in the opposite direction, the equilibrium constant becomes the reciprocal of the original equilibrium constant.

Writing Equilibrium Constant Expressions

1. The concentrations of the reacting species in the condensed phase are expressed in M. In the gaseous phase, the concentrations can be expressed in M or in atm.
2. The concentrations of pure solids, pure liquids and solvents do not appear in the equilibrium constant expressions.
3. The equilibrium constant is a dimensionless quantity.
4. In quoting a value for the equilibrium constant, you must specify the balanced equation and the temperature.
5. If a reaction can be expressed as a sum of two or more reactions, the equilibrium constant for the overall reaction is given by the product of the equilibrium constants of the individual reactions.

The reaction quotient $\left(Q_{c}\right)$ is calculated by substituting the initial concentrations of the reactants and products into the equilibrium constant (K_{c}) expression.

IF

- $Q_{c}<K_{c}$ system proceeds from left to right to reach equilibrium
- $Q_{c}=K_{c}$ the system is at equilibrium
- $Q_{c}>K_{c}$ system proceeds from right to left to reach equilibrium

Reactants \rightarrow Products

Equilibrium : no net change

Reactants \leftarrow Products

At the start of a reaction, there are $0.249 \mathrm{~mol} \mathrm{~N}_{2}, 3.21 \times 10^{-2}$ $\mathrm{mol} \mathrm{H}_{2}$, and $6.42 \times 10^{-4} \mathrm{~mol} \mathrm{NH}_{3}$ in a $3.50-\mathrm{L}$ reaction vessel at $375^{\circ} \mathrm{C}$. If the equilibrium constant $\left(K_{\mathrm{c}}\right)$ for the reaction

$$
\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightleftarrows 2 \mathrm{NH}_{3}(g)
$$

is 1.2 at this temperature, decide whether the system is at equilibrium. If it is not, predict which way the net reaction will proceed.

Example 15.5

Strategy

We are given the initial amounts of the gases (in moles) in a vessel of known volume (in liters), so we can calculate their molar concentrations and hence the reaction quotient $\left(Q_{\mathrm{c}}\right)$. How does a comparison of Q_{c} with K_{c} enable us to determine if the system is at equilibrium or, if not, in which direction will the net reaction proceed to reach equilibrium?

Example 15.5

Solution

The initial concentrations of the reacting species are

$$
\begin{aligned}
& {\left[\mathrm{N}_{2}\right]_{\mathrm{o}}=\frac{0.249 \mathrm{~mol}}{3.50 \mathrm{~L}}=0.0711 \mathrm{M}} \\
& {\left[\mathrm{H}_{2}\right]_{\mathrm{o}}=\frac{3.21 \times 10^{-2} \mathrm{~mol}}{3.50 \mathrm{~L}}=9.17 \times 10^{-3} \mathrm{M}} \\
& {\left[\mathrm{NH}_{3}\right]_{\mathrm{o}}=\frac{6.42 \times 10^{-4} \mathrm{~mol}}{3.50 \mathrm{~L}}=1.83 \times 10^{-4} \mathrm{M}}
\end{aligned}
$$

Example 15.5

Next we write

$$
Q_{\mathrm{c}}=\frac{\left[\mathrm{NH}_{3}\right]_{\mathbf{0}}^{2}}{\left[\mathrm{~N}_{2}\right]_{\mathbf{0}}\left[\mathrm{H}_{2}\right]_{\mathbf{o}}^{3}}=\frac{\left(1.83 \times 10^{-4}\right)^{2}}{(0.0711)\left(9.17 \times 10^{-3}\right)^{3}}=0.611
$$

Because Q_{c} is smaller than K_{c} (1.2), the system is not at equilibrium. The net result will be an increase in the concentration of NH_{3} and a decrease in the concentrations of N_{2} and H_{2}. That is, the net reaction will proceed from left to right until equilibrium is reached.

Calculating Equilibrium Concentrations

1. Express the equilibrium concentrations of all species in terms of the initial concentrations and a single unknown x, which represents the change in concentration.
2. Write the equilibrium constant expression in terms of the equilibrium concentrations. Knowing the value of the equilibrium constant, solve for x.
3. Having solved for x, calculate the equilibrium concentrations of all species.

Example 15.6

A mixture of $0.500 \mathrm{~mol} \mathrm{H}_{2}$ and $0.500 \mathrm{~mol}_{2}$ was placed in a $1.00-\mathrm{L}$ stainless-steel flask at $430^{\circ} \mathrm{C}$. The equilibrium constant K_{c} for the reaction $\mathrm{H}_{2}(g)+\mathrm{I}_{2}(g) \rightleftarrows 2 \mathrm{HI}(g)$ is 54.3 at this temperature. Calculate the concentrations of $\mathrm{H}_{2}, \mathrm{I}_{2}$, and HI at equilibrium.

Example 15.6

Strategy

We are given the initial amounts of the gases (in moles) in a vessel of known volume (in liters), so we can calculate their molar concentrations. Because initially no HI was present, the system could not be at equilibrium. Therefore, some H_{2} would react with the same amount of I_{2} (why?) to form HI until equilibrium was established.

Solution We follow the preceding procedure to calculate the equilibrium concentrations.

Step 1: The stoichiometry of the reaction is $1 \mathrm{~mol}_{\mathrm{H}_{2}}$ reacting with $1 \mathrm{~mol}_{2}$ to yield 2 mol HI . Let x be the depletion in concentration ($\mathrm{mol} / \mathrm{L}$) of H_{2} and I_{2} at equilibrium. It follows that the equilibrium concentration of HI must be $2 x$. We summarize the changes in concentrations as follows:

	$\mathrm{H}_{2}+$	I_{2}	\rightleftarrows	2 HI
Initial $(M):$	0.500	0.500		0.000
Change $(M):$	$-x$	$-x$		$+2 x$
Equilibrium $(M):$	$(0.500-x)$	$(0.500-x)$		$2 x$

Example 15.6

Step 2: The equilibrium constant is given by

$$
K_{\mathrm{c}}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}
$$

Substituting, we get

$$
54.3=\frac{(2 x)^{2}}{(0.500-x)(0.500-x)}
$$

Taking the square root of both sides, we get

$$
\begin{aligned}
7.37 & =\frac{2 x}{0.500-x} \\
x & =0.393 \mathrm{M}
\end{aligned}
$$

Example 15.6

Step 3: At equilibrium, the concentrations are

$$
\begin{gathered}
{\left[\mathrm{H}_{2}\right]=(0.500-0.393) M=\mathbf{0 . 1 0 7} \mathbf{M}} \\
{\left[\mathrm{I}_{2}\right]=(0.500-0.393) \mathrm{M}=\mathbf{0 . 1 0 7} \mathbf{M}} \\
{[\mathrm{HI}]=2 \times 0.393 \mathrm{M}=\mathbf{0 . 7 8 6} \mathbf{M}}
\end{gathered}
$$

Check You can check your answers by calculating K_{c} using the equilibrium concentrations. Remember that K_{c} is a constant for a particular reaction at a given temperature.

Example 15.7

For the same reaction and temperature as in Example 15.6, $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{HI}(\mathrm{g})$, suppose that the initial concentrations of $\mathrm{H}_{2}, \mathrm{I}_{2}$, and HI are $0.00623 \mathrm{M}, 0.00414 \mathrm{M}$, and 0.0224 M , respectively. Calculate the concentrations of these species at equilibrium.

Example 15.7

Strategy

From the initial concentrations we can calculate the reaction quotient $\left(Q_{\mathrm{c}}\right)$ to see if the system is at equilibrium or, if not, in which direction the net reaction will proceed to reach equilibrium. A comparison of Q_{c} with K_{c} also enables us to determine if there will be a depletion in H_{2} and I_{2} or HI as equilibrium is established.

Example 15.7

Solution

First we calculate Q_{c} as follows:

$$
Q_{\mathrm{c}}=\frac{[\mathrm{HI}]_{0}^{2}}{\left[\mathrm{H}_{2}\right]_{0}\left[\mathrm{I}_{2}\right]_{0}}=\frac{(0.0224)^{2}}{(0.00623)(0.00414)}=19.5
$$

Because Q_{c} (19.5) is smaller than $K_{\mathrm{c}}(54.3)$, we conclude that the net reaction will proceed from left to right until equilibrium is reached (see Figure 15.4); that is, there will be a depletion of H_{2} and I_{2} and a gain in HI .

Step 1: Let x be the depletion in concentration ($\mathrm{mol} / \mathrm{L}$) of H_{2} and I_{2} at equilibrium. From the stoichiometry of the reaction it follows that the increase in concentration for HI must be $2 x$. Next we write

	$\mathrm{H}_{2}+$	I_{2}	f	2 HI
Initial $(M):$	0.00623	0.00414	0.0224	
Change $(M):$	$-x$	$-x$	$+2 x$	
Equilibrium $(M):$	$(0.00623-x)$	$(0.00414-x)$	$(0.0224+2 x)$	

Example 15.7

Step 2: The equilibrium constant is

$$
K_{\mathrm{c}}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}
$$

Substituting, we get

$$
54.3=\frac{(0.0224+2 x)^{2}}{(0.00623-x)(0.00414-x)}
$$

It is not possible to solve this equation by the square root shortcut, as the starting concentrations $\left[\mathrm{H}_{2}\right]$ and $\left[\mathrm{I}_{2}\right]$ are unequal. Instead, we must first carry out the multiplications
$54.3\left(2.58 \times 10^{-5}-0.0104 x+x^{2}\right)=5.02 \times 10^{-4}+0.0896 x+4 x^{2}$

Collecting terms, we get

$$
50.3 x^{2}-0.654 x+8.98 \times 10^{-4}=0
$$

This is a quadratic equation of the form $a x^{2}+b x+c=0$. The solution for a quadratic equation (see Appendix 4) is

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Here we have $a=50.3, b=-0.654$, and $c=8.98 \times 10^{-4}$, so that

$$
\begin{array}{r}
x=\frac{0.654 \pm \sqrt{(-0.654)^{2}-4(50.3)\left(8.98 \times 10^{-4}\right)}}{2 \times 50.3} \\
\quad x=0.0114 M \quad \text { or } \quad x=0.00156 M
\end{array}
$$

Example 15.7

The first solution is physically impossible because the amounts of H_{2} and I_{2} reacted would be more than those originally present. The second solution gives the correct answer. Note that in solving quadratic equations of this type, one answer is always physically impossible, so choosing a value for x is easy.

Step 3: At equilibrium, the concentrations are

$$
\begin{aligned}
{\left[\mathrm{H}_{2}\right] } & =(0.00623-0.00156) M=0.00467 \boldsymbol{M} \\
{\left[\mathrm{I}_{2}\right] } & =(0.00414-0.00156) M-\mathbf{0 . 0 0 2 5 8} \mathbf{M} \\
{[\mathrm{HI}] } & =(0.0224+2 \times 0.00156) M=0.0255 \boldsymbol{M}
\end{aligned}
$$

Example 15.7

Check

You can check the answers by calculating K_{c} using the equilibrium concentrations. Remember that K_{c} is a constant for a particular reaction at a given temperature.

