

Physical Properties of Solutions

Chapter 12

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

A solution is a homogenous mixture of 2 or more substances

The solute is(are) the substance(s) present in the smaller amount(s)

The solvent is the substance present in the larger amount

Table 13.1	Types of Solutions		
		State of Resulting Solution	Examples
Solute	Solvent	Gas	Air
Gas	Gas	Liquid	$\mathrm{Soda}^{2}\left(\mathrm{CO}_{2}\right.$ in water $)$
Gas	Liquid	Solid	H_{2} gas in palladium
Gas	Solid	Liquid	Ethanol in water $_{\text {Liquid }}$
Liquid	Liquid	Liquid	NaCl in water
Solid	Solid	Solid	$\mathrm{Brass}(\mathrm{Cu} / \mathrm{Zn})$, solder $(\mathrm{Sn} / \mathrm{Pb})$
Solid			

Three types of interactions in the solution process:

- solvent-solvent interaction
- solute-solute interaction
- solvent-solute interaction

Molecular view of the formation of solution

Solution

Concentration Units Continued

Molarity (M)

$\boldsymbol{M}=\frac{\text { moles of solute }}{\text { liters ofsolution }}$

Molality (m)

$$
\boldsymbol{m}=\frac{\text { moles of solute }}{\text { mass of solvent } \mathrm{kg} \text {) }}
$$

Example 13.2

Calculate the molality of a sulfuric acid solution containing 24.4 g of sulfuric acid in 198 g of water.

The molar mass of sulfuric acid is 98.09 g .

Strategy To calculate the molality of a solution, we need to know the number of moles of solute and the mass of the solvent in kilograms.

Solution The definition of molality (m) is

$$
m=\frac{\text { moles of solute }}{\text { mass of solvent }(\mathrm{kg})}
$$

First, we find the number of moles of sulfuric acid in 24.4 g of the acid, using its molar mass as the conversion factor.

$$
\text { moles of } \begin{aligned}
\mathrm{H}_{2} \mathrm{SO}_{4} & =24.4 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}}{98.09 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}} \\
& =0.249 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}
\end{aligned}
$$

Example 13.2

The mass of water is 198 g , or 0.198 kg . Therefore,

$$
\begin{aligned}
m & =\frac{0.249 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}}{0.198 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O}} \\
& =1.26 \mathrm{~m}
\end{aligned}
$$

Example 13.3

The density of a 2.45 M aqueous solution of methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ is $0.976 \mathrm{~g} / \mathrm{mL}$. What is the molality of the solution? The molar mass of methanol is 32.04 g .

Example 13.3

Strategy To calculate the molality, we need to know the number of moles of methanol and the mass of solvent in kilograms. We assume 1 L of solution, so the number of moles of methanol is 2.45 mol .

Solution Our first step is to calculate the mass of water in 1 L of the solution, using density as a conversion factor. The total mass of 1 L of a 2.45 M solution of methanol is

$$
1 \mathrm{~L} \text { soln } \times \frac{1000 \mathrm{~mL} \text { sotn }}{1 \mathrm{~L} \text { soln }} \times \frac{0.976 \mathrm{~g}}{1 \mathrm{~mL} \text {-soln }}=976 \mathrm{~g}
$$

Because this solution contains 2.45 moles of methanol, the amount of water (solvent) in the solution is
mass of $\mathrm{H}_{2} \mathrm{O}=$ mass of soln - mass of solute

$$
\begin{aligned}
& =976 \mathrm{~g}-\left(2.45 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{OH} \times \frac{32.04 \mathrm{~g} \mathrm{CH}_{3} \mathrm{OH}}{1 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{OH}}\right) \\
& =898 \mathrm{~g}
\end{aligned}
$$

Example 13.3

The molality of the solution can be calculated by converting 898 g to 0.898 kg :

$$
\begin{aligned}
\text { molality } & =\frac{2.45 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{OH}}{0.898 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O}} \\
& =2.73 \mathrm{~m}
\end{aligned}
$$

Colligative Properties of Nonelectrolyte Solutions

Colligative properties are properties that depend only on the number of solute particles in solution and not on the nature of the solute particles.

Vapor-Pressure Lowering

$P_{1}=X_{1} P_{1}^{0} \quad P_{1}^{0}=$ vapor pressure of pure solvent
Raoult's law
$X_{1}=$ mole fraction of the solvent

If the solution contains only one solute:
$X_{1}=1-X_{2}$
$P_{1}^{0}-P_{1}=\Delta P=X_{2} P_{1}^{0} \quad X_{2}=$ mole fraction of the solute

Example 13.6

Calculate the vapor pressure of a solution made by dissolving 218 g of glucose (molar mass $=180.2 \mathrm{~g} / \mathrm{mol}$) in 460 mL of water at $30^{\circ} \mathrm{C}$.

What is the vapor-pressure lowering?
The vapor pressure of pure water at $30^{\circ} \mathrm{C}$ is given in Table 5.2 (p. 157). Assume the density of the solvent is $1.00 \mathrm{~g} / \mathrm{mL}$.

Example 13.6

Strategy We need Raoult's law [Equation (13.6)] to determine the vapor pressure of a solution. Note that glucose is a nonvolatile solute.

Solution The vapor pressure of a solution $\left(P_{1}\right)$ is

First we calculate the number of moles of glucose and water in the solution

$$
\begin{aligned}
& n_{1}(\text { water })=460 \mathrm{~mL} \times \frac{1.00 \mathrm{~g}}{1 \mathrm{mt}} \times \frac{1 \mathrm{~mol}}{18.02 \mathrm{~g}}=25.5 \mathrm{~mol} \\
& n_{2}(\text { glucose })=218 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{180.2 \mathrm{~g}}=1.21 \mathrm{~mol}
\end{aligned}
$$

Example 13.6

The mole fraction of water, X_{1}, is given by

$$
\begin{aligned}
X_{1} & =\frac{n_{1}}{n_{1}+n_{2}} \\
& =\frac{25.5 \mathrm{~mol}}{25.5 \mathrm{~mol}+1.21 \mathrm{~mol}}=0.955
\end{aligned}
$$

From Table 5.2, we find the vapor pressure of water at $30^{\circ} \mathrm{C}$ to be 31.82 mmHg . Therefore, the vapor pressure of the glucose solution is

$$
\begin{aligned}
P_{1} & =0.955 \times 31.82 \mathrm{mmHg} \\
& =30.4 \mathrm{mmHg}
\end{aligned}
$$

Finally, the vapor-pressure lowering (ΔP) is (31.82-30.4) mmHg , or 1.4 mmHg .

$$
\begin{aligned}
& P_{\mathrm{A}}=X_{\mathrm{A}} P_{\mathrm{A}}^{0} \\
& P_{\mathrm{B}}=X_{\mathrm{B}} P_{\mathrm{B}}^{0} \\
& P_{\mathrm{T}}=P_{\mathrm{A}}+P_{\mathrm{B}} \\
& P_{\mathrm{T}}=X_{\mathrm{A}} P_{\mathrm{A}}^{0}+X_{\mathrm{B}} P_{\mathrm{B}}^{0}
\end{aligned}
$$

P_{T} is greater than predicted by Raoult's law

Force

$$
\text { Force }<\text { rorce } \& \text { Force }
$$

P_{T} is less than predicted by Raoult's law

$\underset{A-B}{\text { Force }}>\stackrel{\text { Force }}{A-A} \& \underset{B-B}{\text { Force }}$

Boiling-Point Elevation

$$
\Delta T_{\mathrm{b}}=T_{\mathrm{b}}-T_{\mathrm{b}}^{0}
$$

T_{b}^{0} is the boiling point of the pure solvent
T_{b} is the boiling point of the solution
$T_{\mathrm{b}}>T_{\mathrm{b}}^{0} \quad \Delta T_{\mathrm{b}}>0$

$$
\Delta T_{\mathrm{b}}=K_{\mathrm{b}} m
$$

m is the molality of the solution
K_{b} is the molal boiling-point elevation constant (${ }^{\circ} \mathrm{C} / \mathrm{m}$) for a given solvent

Freezing-Point Depression

$$
\Delta T_{\mathrm{f}}=T_{\mathrm{f}}^{0}-T_{\mathrm{f}}
$$

T_{f}^{0} is the freezing point of the pure solvent
T_{f} is the freezing point of the solution

$$
T_{\mathrm{f}}^{0}>T_{\mathrm{f}} \quad \Delta T_{\mathrm{f}}>0
$$

$$
\Delta T_{\mathrm{f}}=K_{\mathrm{f}} m
$$

m is the molality of the solution
K_{f} is the molal freezing-point depression constant (${ }^{\circ} \mathrm{C} / m$) for a given solvent

Table $\mathbf{1 3 . 2}$	Molal Boiling-Point Elevation and Freezing-Point Depression Constants of Several Common Liquids			
Solvent	Normal Freezing Point $\left({ }^{\circ} \mathbf{C}\right)^{*}$	$\boldsymbol{K}_{\mathbf{f}}$ $\left({ }^{\circ} \mathbf{C} / \boldsymbol{m}\right)$	Normal Boiling Point $\left({ }^{\circ} \mathbf{C}\right)^{*}$	$\boldsymbol{K}_{\mathbf{b}}$ $\left({ }^{\circ} \mathbf{C} / \boldsymbol{m}\right)$
Water	0	1.86	100	0.52
Benzene	5.5	5.12	80.1	2.53
Ethanol	-117.3	1.99	78.4	1.22
Acetic acid	16.6	3.90	117.9	2.93
Cyclohexane	6.6	20.0	80.7	2.79

Ethylene glycol (EG), $\mathrm{CH}_{2}(\mathrm{OH}) \mathrm{CH}_{2}(\mathrm{OH})$, is a common automobile antifreeze. It is water soluble and fairly nonvolatile (b.p. $197^{\circ} \mathrm{C}$).

Calculate the freezing point of a solution containing 651 g of this substance in 2505 g of water.

Would you keep this substance in your car radiator during the summer?

The molar mass of ethylene glycol is 62.07 g .

Example 13.7

Strategy This question asks for the depression in freezing point of the solution.

The information given enables us to calculate the molality of the solution and we refer to Table 13.2 for the K_{f} of water.

Solution To solve for the molality of the solution, we need to know the number of moles of EG and the mass of the solvent in kilograms.

Example 13.7

We find the molar mass of EG, and convert the mass of the solvent to 2.505 kg , and calculate the molality as follows:

$$
\begin{aligned}
& 651 \mathrm{gEG} \times \frac{1 \mathrm{~mol} \mathrm{EG}}{62.07 \mathrm{gEG}}=10.5 \mathrm{~mol} \mathrm{EG} \\
& m=\frac{\text { moles of solute }}{\text { mass of solvent }(\mathrm{kg})} \\
& =\frac{10.5 \mathrm{~mol} \mathrm{EG}}{2.505 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O}}=4.19 \mathrm{~mol} \mathrm{EG} / \mathrm{kg} \mathrm{H} \mathrm{H} \mathrm{O} \\
& \\
& =4.19 \mathrm{~m}
\end{aligned}
$$

From Equation (13.9) and Table 13.2 we write

$$
\begin{aligned}
\Delta T_{\mathrm{f}} & =K_{\mathrm{f}} m \\
& =\left(1.86^{\circ} \mathrm{C} / m\right)(4.19 \mathrm{~m}) \\
& =7.79^{\circ} \mathrm{C}
\end{aligned}
$$

Example 13.7

Because pure water freezes at $0^{\circ} \mathrm{C}$, the solution will freeze at ($0-7.79)^{\circ} \mathrm{C}$ or $27.79^{\circ} \mathrm{C}$.

We can calculate boiling-point elevation in the same way as follows:

$$
\begin{aligned}
\Delta T_{\mathrm{b}} & =K_{\mathrm{b}} m \\
& =\left(0.52^{\circ} \mathrm{C} / m\right)(4.19 \mathrm{~m}) \\
& =2.2^{\circ} \mathrm{C}
\end{aligned}
$$

Because the solution will boil at $(100+2.2)^{\circ} \mathrm{C}$, or $102.2^{\circ} \mathrm{C}$, it would be preferable to leave the antifreeze in your car radiator in summer to prevent the solution from boiling.

Osmotic Pressure (π)

Osmosis is the selective passage of solvent molecules through a porous membrane from a dilute solution to a more concentrated one.
A semipermeable membrane allows the passage of solvent molecules but blocks the passage of solute molecules.
Osmotic pressure (π) is the pressure required to stop osmosis.

Osmotic Pressure (π)

$$
\pi=M R T
$$

M is the molarity of the solution
R is the gas constant
T is the temperature (in K)

A cell in an:

- Water molecules
- Solute molecules

isotonic solution

hypotonic solution

hypertonic solution

Colligative Properties of Nonelectrolyte Solutions

Colligative properties are properties that depend only on the number of solute particles in solution and not on the nature of the solute particles.

Vapor-Pressure Lowering
Boiling-Point Elevation
Freezing-Point Depression

Osmotic Pressure (π)

$$
P_{1}=X_{1} P_{1}^{\circ}
$$

$$
\Delta T_{\mathrm{b}}=K_{\mathrm{b}} m
$$

$\Delta T_{\mathrm{f}}=K_{\mathrm{f}} m$
$\pi=M R T$

Example 13.8

A 7.85-g sample of a compound with the empirical formula $\mathrm{C}_{5} \mathrm{H}_{4}$ is dissolved in 301 g of benzene.

The freezing point of the solution is $1.05^{\circ} \mathrm{C}$ below that of pure benzene.

What are the molar mass and molecular formula of this compound?

Strategy Solving this problem requires three steps. First, we calculate the molality of the solution from the depression in freezing point.

Next, from the molality we determine the number of moles in 7.85 g of the compound and hence its molar mass.

Finally, comparing the experimental molar mass with the empirical molar mass enables us to write the molecular formula.

Solution The sequence of conversions for calculating the molar mass of the compound is

$$
\begin{gathered}
\text { freezing-point } \\
\text { depression }
\end{gathered} \underset{\text { molality }}{\longrightarrow} \text { number of } \longrightarrow \text { molar mass }
$$

Example 13.8

Our first step is to calculate the molality of the solution. From Equation (13.9) and Table 13.2 we write

$$
\text { molality }=\frac{\Delta T_{\mathrm{f}}}{K_{\mathrm{f}}}=\frac{1.05^{\circ} \mathrm{C}}{5.12^{\circ} \mathrm{C} / \mathrm{m}}=0.205 \mathrm{~m}
$$

Because there is 0.205 mole of the solute in 1 kg of solvent, the number of moles of solute in 301 g , or 0.301 kg , of solvent is

$$
0.301 \mathrm{~kg} \times \frac{0.205 \mathrm{~mol}}{1 \mathrm{~kg}}=0.0617 \mathrm{~mol}
$$

Example 13.8

Thus, the molar mass of the solute is

$$
\begin{aligned}
\text { molar mass } & =\frac{\text { grams of compound }}{\text { moles of compound }} \\
& =\frac{7.85 \mathrm{~g}}{0.0617 \mathrm{~mol}}=127 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

Now we can determine the ratio

Therefore, the molecular formula is $\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)_{2}$ or $\mathrm{C}_{10} \mathrm{H}_{8}$ (naphthalene).

Example 13.9

A solution is prepared by dissolving 35.0 g of hemoglobin (Hb) in enough water to make up 1 L in volume.

If the osmotic pressure of the solution is found to be 10.0 mmHg at $25^{\circ} \mathrm{C}$, calculate the molar mass of hemoglobin.

Strategy We are asked to calculate the molar mass of Hb . The steps are similar to those outlined in Example 13.8.

From the osmotic pressure of the solution, we calculate the molarity of the solution.

Then, from the molarity, we determine the number of moles in 35.0 g of Hb and hence its molar mass. What units should we use for π and temperature?

Solution The sequence of conversions is as follows: osmotic pressure \longrightarrow molarity \longrightarrow number of moles \longrightarrow molar mass

Example 13.9

First we calculate the molarity using Equation (13.10)

$$
\begin{aligned}
\pi & =M R T \\
M & =\frac{\pi}{R T} \\
& =\frac{10.0 \mathrm{mmHg} \times \frac{1 \mathrm{~atm}}{760 \mathrm{mmHg}}}{(0.0821 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{K} \cdot \mathrm{~mol})(298 \mathrm{~K})} \\
& =5.38 \times 10^{-4} \mathrm{M}
\end{aligned}
$$

The volume of the solution is 1 L , so it must contain $5.38 \times 10^{-4} \mathrm{~mol}$ of Hb .

Example 13.9

We use this quantity to calculate the molar mass:

$$
\begin{aligned}
\text { moles of } \mathrm{Hb} & =\frac{\text { mass of } \mathrm{Hb}}{\text { molar mass of } \mathrm{Hb}} \\
\text { molar mass of } \mathrm{Hb} & =\frac{\text { mass of } \mathrm{Hb}}{\text { moles of } \mathrm{Hb}} \\
& =\frac{35.0 \mathrm{~g}}{5.38 \times 10^{-4} \mathrm{~mol}} \\
& =6.51 \times 10^{4} \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

Colligative Properties of Electrolyte Solutions

0.1 m NaCl solution $\longrightarrow 0.1 \mathrm{~m} \mathrm{Na}^{+}$ions $\& 0.1 \mathrm{~m} \mathrm{Cl}$ - ions

Colligative properties are properties that depend only on the number of solute particles in solution and not on the nature of the solute particles.
0.1 m NaCl solution $\longrightarrow 0.2 \mathrm{~m}$ ions in solution van't Hoff factor $(i)=\frac{\text { actual number of particles in soln after dissociation }}{\text { number of formula units initially dissolved in soln }}$

ishould be

nonelectrolytes NaCl
CaCl_{2}
3

Colligative Properties of Electrolyte Solutions

Boiling-Point Elevation
 $$
\Delta T_{\mathrm{b}}=i K_{\mathrm{b}} m
$$

Freezing-Point Depression $\Delta T_{f}=i K_{f} m$
Osmotic Pressure (π)
$\pi=i M R T$

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Table $\mathbf{1 3 . 3}$	The van't Hoff Factor of $\mathbf{0 . 0 5 0 0} \mathbf{M}$ Electrolyte Solutions at $\mathbf{2 5}{ }^{\circ} \mathbf{C}$	
Electrolyte	\boldsymbol{i} (measured)	\boldsymbol{i} (calculated)
Sucrose*	1.0	1.0
HCl	1.9	2.0
NaCl	1.9	2.0
MgSO_{4}	1.3	2.0
MgCl_{2}	2.7	3.0
FeCl_{3}	3.4	4.0

Example 13.10

The osmotic pressure of a 0.010 M potassium iodide (KI) solution at $25^{\circ} \mathrm{C}$ is 0.465 atm .

Calculate the van't Hoff factor for KI at this concentration.

Example 13.10

Strategy Note that KI is a strong electrolyte, so we expect it to dissociate completely in solution. If so, its osmotic pressure would be

$$
2(0.010 \mathrm{M})(0.0821 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{K} \cdot \mathrm{~mol})(298 \mathrm{~K})=0.489 \mathrm{~atm}
$$

However, the measured osmotic pressure is only 0.465 atm . The smaller than predicted osmotic pressure means that there is ion-pair formation, which reduces the number of solute particles (K^{+}and I^{-}ions) in solution.

Example 13.10

Solution From Equation (13.13) we have

$$
\begin{aligned}
i & =\frac{\pi}{M R T} \\
& =\frac{0.465 \mathrm{~atm}}{(0.010 \mathrm{M})(0.0821 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{K} \cdot \mathrm{~mol})(298 \mathrm{~K})} \\
& =1.90
\end{aligned}
$$

