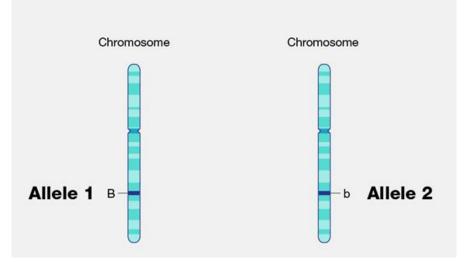


Dr. Ahmed Salem

Overview


- ISOZYMES a group of enzymes that catalyze the same reaction but have different enzyme forms and catalytic efficiencies.
- Application of isozymes in diagnosis

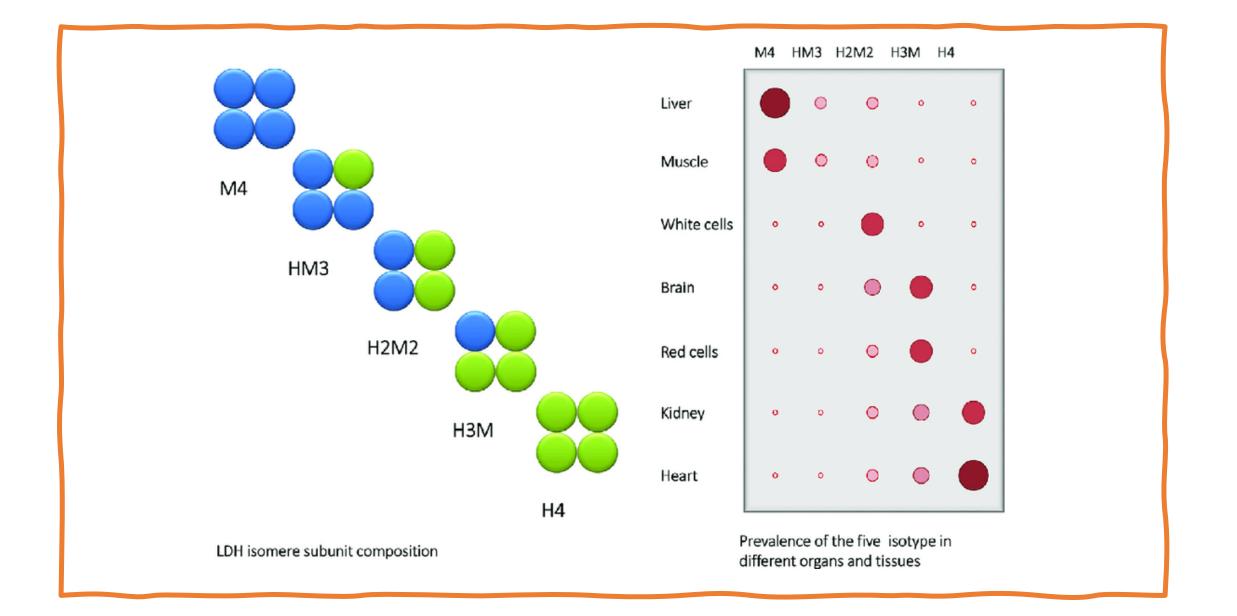
Isozymes (Isoenzymes)

- Physically distinct forms of the same enzyme
 - Multiple molecular forms of an enzyme are described as isozymes or iso-enzymes; enzymes that catalyze the same reaction
 - Different molecular forms of the same enzyme synthesized from various tissues
 - Useful to understand diseases
- Homomultimer protein: subunits are all the same, represented by a single gene
- Heteromultimer protein: subunits are different, produced by different genes

Isozyme formation

- Products of different genes: true isozymes
- The same locus of the gene may have different alleles → allelic isozymes are called allozymes (only one form will be present in the individual)
 - e.g. more than 400 distinct forms of **glucose 6-P dehydrogenase** in population
 - Polymorphism: >1% frequency of variation at a single locus

Isozyme formation


- Molecular heterogeneity of enzymes may also be produced after the protein is synthesized (post-translational modification): **iso-forms**
- In some cases, all the different forms of an enzyme are present in the same individual
 - e.g. **LDH** has 5 iso-enzymes

Identification of isozymes

- In Agar gel or polyacrylamide gel electrophoresis: isozymes have different mobility LDH, CK and ALP isozymes can be separated by electrophoresis
- **2. Heat stability**: one of the isozymes may be easily **denatured** by heat Bone isozyme of **ALP** (BALP)
- **3. Inhibitors:** one of the isozymes may be sensitive to one inhibitor Tartrate labile ACP
- 4. Km value or substrate specificity may be different for isozymes Glucokinase has high Km and hexokinase has low Km for glucose

Identification of isozymes

- 5. Cofactor requirements may be different for isozymes
 - Mitochondrial isocitrate dehydrogenase is NAD⁺ dependent
 - Cytoplasmic isozyme is NADP + dependent
- 6. Tissue localization may be different for isozymes
 - H4 form of LDH is present in heart
 - M4 variety is seen in skeletal muscle
- 7. Specific antibodies may identify different types of isozymes
 - CK iso-enzymes are separated by antibodies

Applications of isozymes in diagnosis

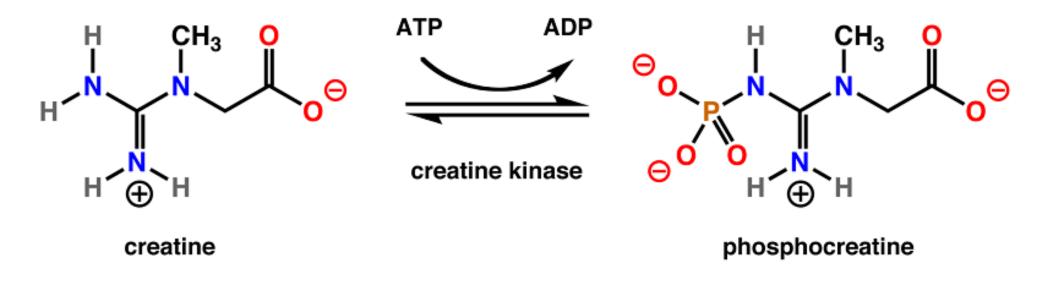
Clinical Enzymology

- Plasma contains many functional enzymes, which are **actively secreted** into plasma.
- There are a few **nonfunctional enzymes in plasma**, which are coming out from cells of various tissues due to normal wear and tear
 - Their normal levels in blood are very low; but are **drastically** increased during necrosis or disease
- Assays of these enzymes are very useful in diagnosis of diseases

Enzymes as (cardiac) Biomarkers

• A **biomarker** is a clinical laboratory test which is useful in detecting dysfunction of an organ

Different markers are used to:


1. Detect myocardial ischemia at the earliest

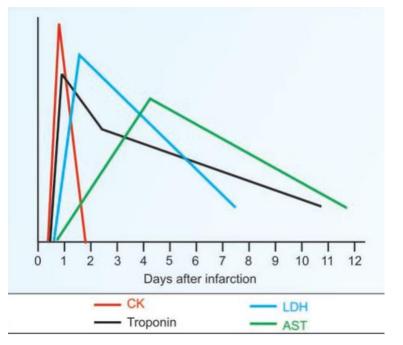
Commonly used biomarkers for **early detection** of acute myocardial infarction are:

- Cardiac troponins
- Creatine kinase, CK-MB
- Myoglobin
- 2. Monitoring the progression of the condition
- 3. **Predict** the risk in cardiac dysfunction

CREATINE KINASE (CK)

It catalyzes the creatinine kinase reaction

CK and Heart Attack


- CK value in serum is **increased** in **myocardial infarction**
 - The CK level starts to rise **within 3-6 hours** of infarction
- CK estimation is very useful to **detect early cases**, where ECG changes may be ambiguou
 - A second peak may indicate another ischemic episode

Markers of myocardial infarction

Marker	Onset	Peak	Duration
СК-МВ	3-6 hr	18-24 hr	36-72 hr
Troponins	4-10 hr	18-24 hr	8-14 days
LDH	6-12 hr	24-48 hr	6-8 days
AST	24-36 hr	4-5 d	10-12 days
Myoglobin	1-4 hr	6-7 hr	24 hr

CK and Heart Attack

- The CK level is not increased in **hemolysis** or in **congestive cardiac failure**
 - CK has an advantage over LDH
 - The area under the peak and slope of initial rise are proportional to the size of infarct

Time course of CK, LDH, Troponin and AST in blood of MI patients

Iso-enzymes of CK

- CK is a **dimer**; each subunit has a molecular weight of 40 kD
- The <u>3 isozymes of CK</u>:
 - BB (brain)
 - MM (muscle)
 - MB (heart)
- Normally CK2 (heart isozyme) is only 5% of the total activity.
- Even doubling of the value of CK2 (MB) isozyme may not be detected, if total value of CK alone is estimated
- MB isoenzyme estimation is the best diagnostic marker in MI

CK isozyme characteristics

lso- enzyme	Electrophoretic mobility	Tissue of origin	Mean percen- tage in blood
MM (CK	(3)Least	Skeletal muscle	80%
MB (CK	2) Intermediate	Heart	5%
BB (CK	I) Maximum	Brain	1%

Estimation of <u>total CK</u> is employed in muscular dystrophies and MB isozyme is estimated in MI

CARDIAC TROPONINS (CTI/CTT)

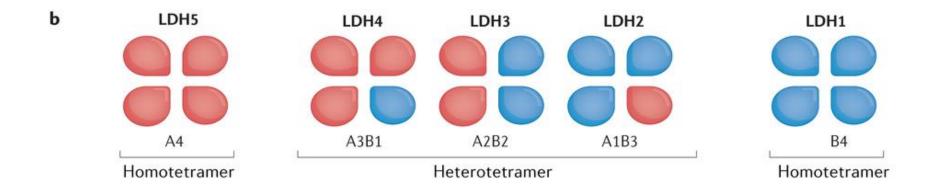
- They are <u>not</u> enzymes
- Troponins are now accepted as reliable markers for MI
- Measurement of cardiac troponins are among the main tests in early detection of an ischemic episode and in monitoring

LACTATE DEHYDROGENASE (LDH)

- LDH convert pyruvate to lactate (Normal value of LDH in serum is 100-200 U/L)
- Values in the upper range are generally seen in children
- <u>Strenuous exercise</u> will slightly increase the value
- LDH level is <u>100 times</u> more inside the **RBC** than in plasma
- Minor amount of **hemolysis** will result in a false positive test

LDH and Heart Attack

- In MI, total LDH activity is increased
- LDH1 (H4) isozyme is increased 5-10 times more


Differential Diagnosis

- Increase in total LDH level is seen in hemolytic anemias, hepatocellular damage, muscular dystrophy, carcinomas, leukemias, and any condition which causes necrosis of body cells
- Total LDH is \uparrow in many conditions \rightarrow LDH isozyme study is important

LDH isozymes

LDH enzyme is a tetramer with 4 subunits (subunit may be either H (heart) or M (muscle) polypeptide chains).

- H subunit and M subunit have the same molecular weight with minor amino acid variation
- ✤5 (Isozymes) combinations of H and M chains are possible
 - LDH1, LDH2, LDH3, LDH4, LDH5
 - All these 5 forms are seen in all persons
 - The isozymes are usually separated by **electrophoresis**
- Normally LDH2 concentration in blood is > LDH1
- LDH has only limited diagnostic value because its non-specific

С

	LDH5	LDH4	LDH3	LDH2	LDH1
Expressed in	• Liver • Skeletal muscle • Kidney (medulla)	 Liver Skeletal muscle Kidney (medulla) 	 Lymphoid tissue Lung Platelets Brain 	 Heart Red blood cells Kidney (cortex) 	 Heart Red blood cells Germ cells
Non-malignant serum (% of activity)	8–20%	9–15%	18–25%	27–37%	17–27%
Related diseases	 Liver diseases Skeletal muscle diseases Lung cancer Advanced-stage CRC 	 Breast cancer Advanced-stage melanoma Advanced-stage CRC 	 Leukaemia Breast cancer Advanced-stage melanoma 	 Haemolytic diseases Non-Hodgkin lymphoma Lymphocytic leukaemia Myeloproliferative syndrome 	 Myocardial infarction Haemolytic anaemia Ovarian cancer Testicular cancer

Isoenzymes of lactate dehydrogenase

H₃M (LDH₂)

м

н

Highest levels found in the following:

Isoenzymes of lactate dehydrogenase

 H_2M_2 (LDH₃)

Highest levels found in the following:

Brain, lung, white blood cells

Heart, kidneys

H₄ (LDH₁)

Red blood cells, heart, kidney, brain

HM₃ (LDH₄)

Lung, skeletal muscle

Skeletal muscle, liver

Enzyme Profiles in Liver Diseases

Enzymes commonly studied for diagnosis of <u>liver diseases</u> are:

- Alanine amino transferase (ALT)
- Alkaline phosphatase (ALP)
- Nucleotide phosphatase (NTP)
- Gamma glutamyl transferase (GGT)

ENOLASE

- A glycolytic enzyme
- <u>Neuron-specific enolase (NSE)</u> is an isozyme seen in neural tissues and <u>Apudomas</u>
- NSE is a **tumor marker** for cancers associated with neuroendocrine origin, small cell lung cancer, neuroblastoma, pheochro-mocytoma, medullary carcinoma of thyroid

Aldolase (ALD)

- A tetrameric enzyme with A and B subunits \rightarrow 5 isozymes
- A glycolytic enzyme
- Normal range of serum is 1.5-7 U/L
- Drastically \uparrow in <u>muscle damages</u> such as progressive <u>muscular dystrophy</u>, <u>poliomyelitis</u>, <u>myasthenia gravis</u> and <u>multiple sclerosis</u>
- It is a very sensitive early index in muscle wasting diseases

Enzymes as Therapeutic Agents

Enzyme	Therapeutic application
1. Asparaginase	Acute lymphoblastic leukemia
2. Streptokinase	To lyse intravascular clot
3. Urokinase	do
4. Streptodornase	DNAse; applied locally
5. Pancreatin (try- psin and lipase)	Pancreatic insufficiency; oral administration
6. Papain	Anti-inflammatory
7. Alpha-1-antitrypsin	AAT deficiency; emphysema

- <u>Streptokinase</u> (from Streptococcus) or <u>Urokinase</u> (from urine) can lyse intravascular clots and are therefore used in myocardial infarction
- **Pepsin** and **trypsin** are given to patients with <u>defective digestion</u>
- <u>Asparaginas</u>e is used as an anticancer drug

Enzymes Used for Diagnosis

Enzyme	Used for testing
Urease	Urea
Uricase	Uric acid
Glucose oxidase	Glucose
Peroxidase	Glucose; Cholesterol
Hexokinase	Glucose
Cholesterol oxidase	Cholesterol
Lipase	Triglycerides
Horse radish peroxidase	ELISA
Alkaline phosphatase	ELISA
Restriction endonuclease	Southern blot; RFLP
Reverse transcriptase	Polymerase chain reaction (RT=PCR)

Required

• Read on **enzyme regulation** (allosteric enzymes) the difference between **homotropic and heterotropic effectors**.