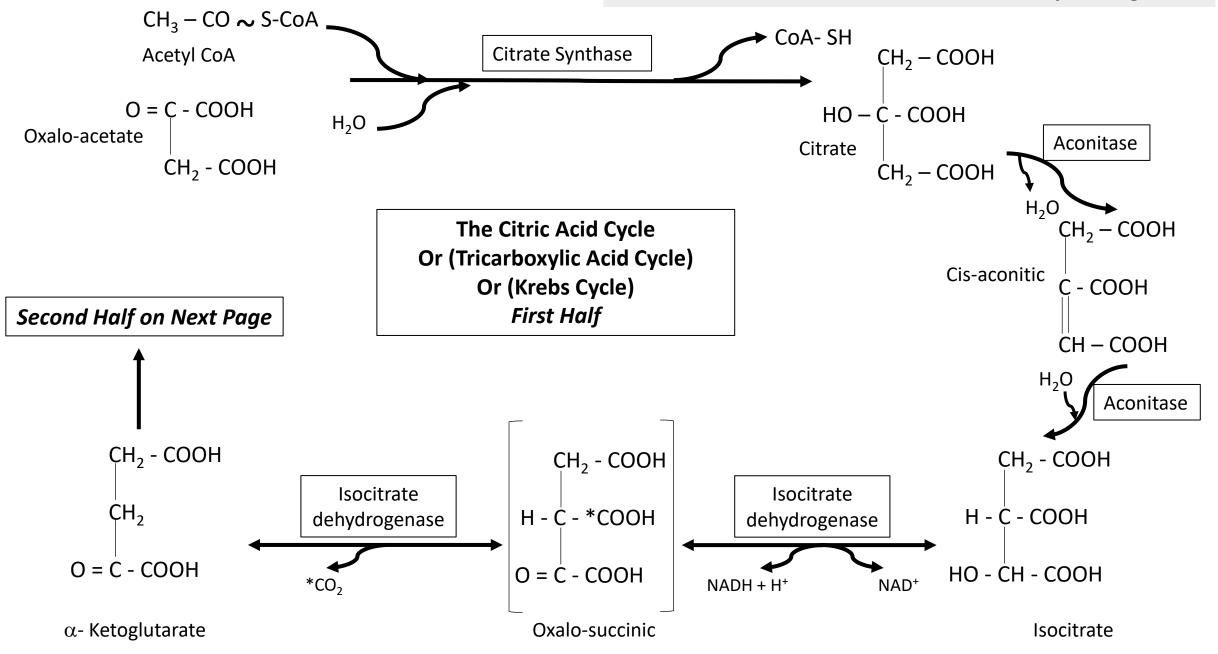
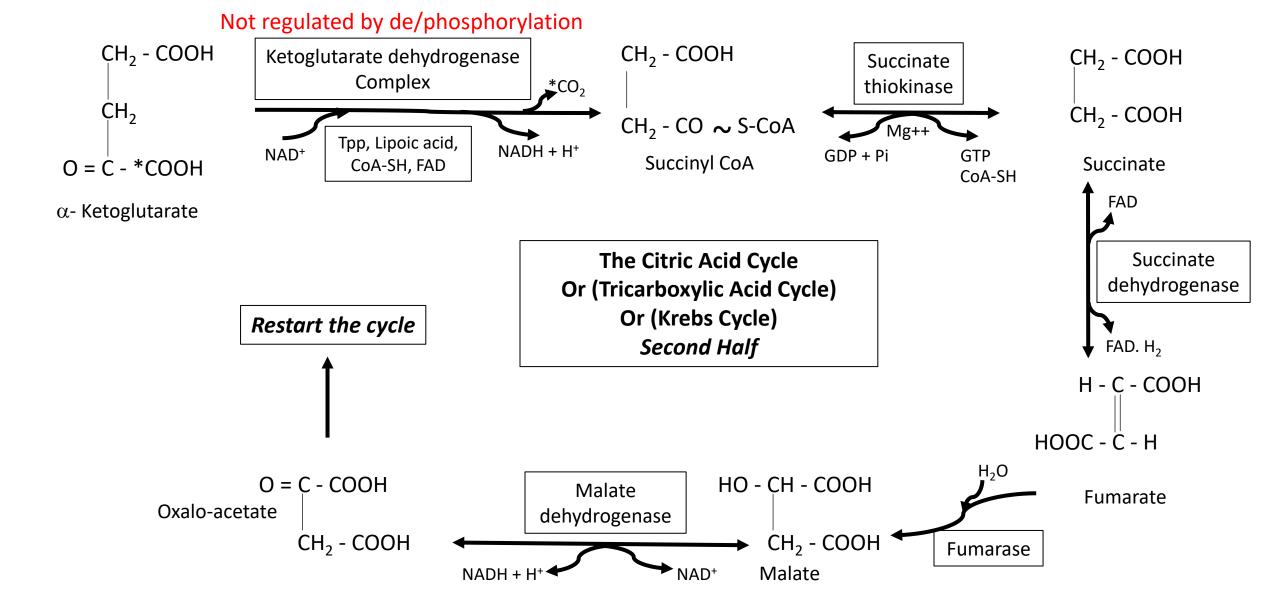

Krebs cycle (tricarboxylic acid cycle; TCA)

Ahmed Salem, MD, MSc, PhD, FRCR

Introduction

- Name: tri-carboxylic acid cycle (TAC), Krebs cycle, or citric acid cycle
- It is the major common pathway of oxidation of CHO, lipids & protein (they all yield acetyl coA)
 - Generates 12 ATP (old) or 10 ATP (new) + 2 CO2
- Site: totally in mitochondria & generates high amount of energy → mitochondria is power house of cell
- To start, you need one molecule of acetyl coA & one molecule of oxaloacetate

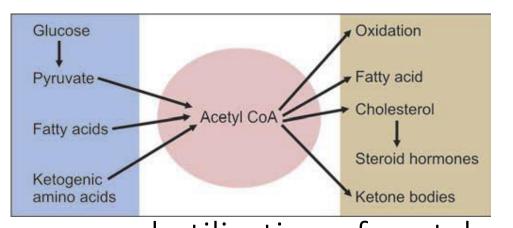

End result:


2 carbons from acetyl coA leave as 2 x CO2 Energy captured: 1 x GTP 3 x NADH+H 1 x FADH2

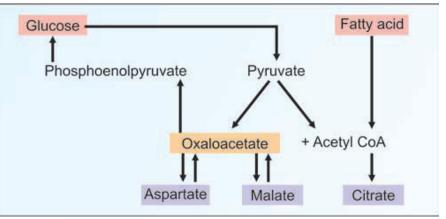
Acetyl CoA (2 carbon), enters the cycle. These are released as CO₂ in steps 3 and 4. So Acetyl CoA is completely oxidised by the time cycle reaches alpha ketoglutarate.

All reactions are readily reversible; except 1st and 4th steps

Reversible vs irreversible reactions: look in upcoming slides

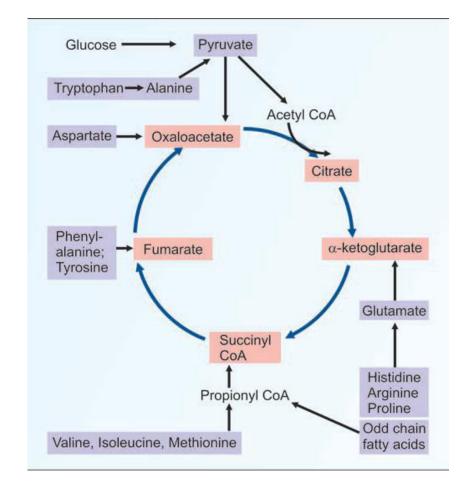


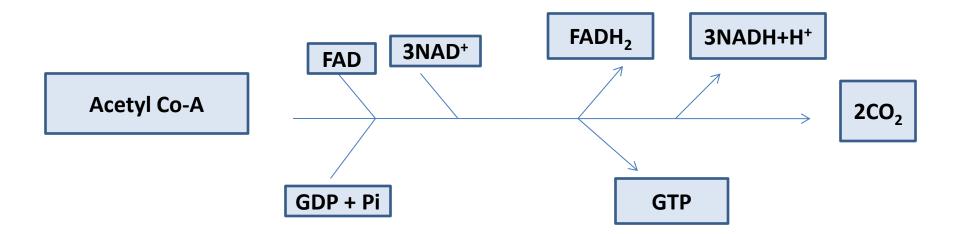
Reversible vs irreversible reactions: look in upcoming slides


Pathway	Step	Enzyme	Source	Method of ATP formation	No of ATP gained per (new calco	r glucose	No of ATPs as per old calculation	_
Glycolysis	1	Hexokinase	-		Minus	1	Minus 1	
Do	3	Phospho- fructokinase	-		Minus	1	Minus 1	
Do	5	Glyceralde- hyde-3-P DH	NADH	Respiratory chain	2.5 x 2 =	5	3 x 2 = 6	1.5 x 2 for FADH2 if glycerol phosphate shuttle
Do	6	1,3-BPG kinase	ATP	Substrate level	1 x 2 =	2	1 x 2 = 2	
Do	9	Pyruvate kinase	ATP	Substrate level	1 x 2 =	2	1 x 2 = 2	
Pyruvate to Acetyl CoA	-	Pyruvate dehydrogenase	NADH	Respiratory chain	2.5 x 2 =	5	3 x 2 = 6	_
TCA cycle	3	Isocitrate DH	NADH	Respiratory chain	2.5 x 2 =	5	3 x 2 = 6	
Do	4	alpha keto glutarate DH	NADH	Respiratory chain	2.5 x 2 =	5	3 x 2 = 6	
Do	5	Succinate thiokinase	GTP	Substrate level	l x 2 =	2	1x2= 2	
Do	6	Succinate DH	FADH ₂	Respiratory chain	1.5 x 2 =	3	2 x 2 = 4	-
Do	8	Malate DH	NADH	Respiratory chain	2.5 x 2 =	5	3 x 2 = 6	
Net generation in glycolytic pathway					9 minus 2	= 7	10 minus 2= 8	-
Generation in pyruvate dehydrogenase reaction					=	5	= 6	
Generation in citric acid cycle					=	20	= 24	
Net generatio	Net generation of ATP from one glucose mol				=	32	= 38	

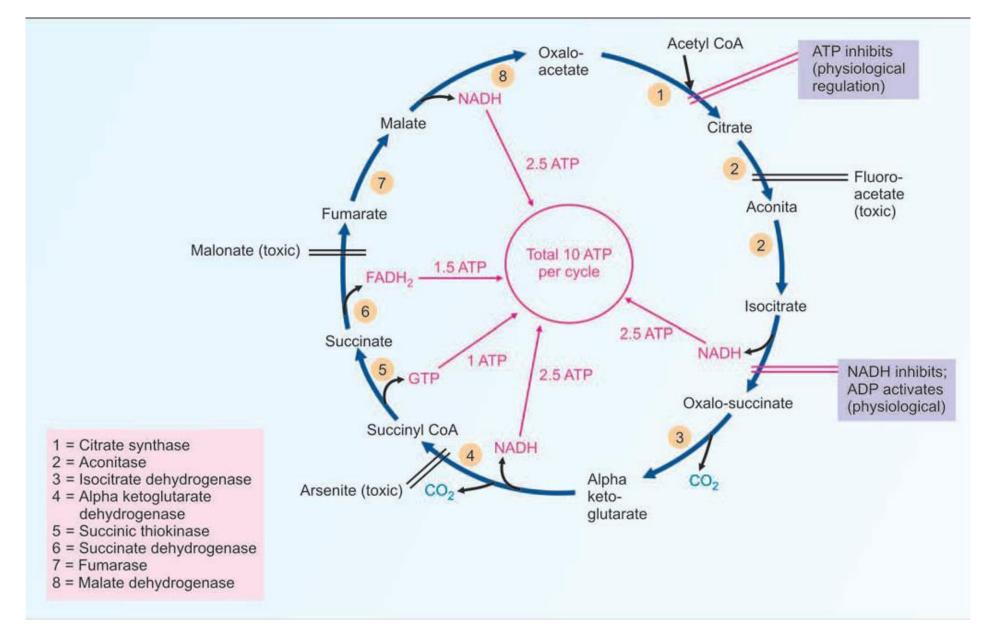
Important facts of Krebs cycle

- Contrary to glycolysis, Krebs cycle can only happen under aerobic conditions
- Enzymes of TCA are found in the mitochondrial matrix, in close proximity to the enzymes of the respiratory chain
- Different isocitrate dehydrogenases are seen (isoenzymes)
 - NAD+ specific in mitochondria
 - NADP+ specific in cytoplasm
- <u>Alpha ketoglutarate dehydrogenase is irreversible step</u>
 - Citrate synthase is irreversible but body can reverse it via ATP-citrate lyase
 - IDH step of the citric acid cycle is often (<u>but not always</u>) an irreversible reaction due to its large negative change in free energy


Oxaloacetate as a "catalyst" and junction point of metabolism


Sources and utilization of acetyl coA

Significance/importance of Krebs cycle (1 of 2)


- 1. Complete oxidation of acetyl CoA
- ATP generation
- 3. Final common oxidative pathway
- 4. Integration of major metabolic pathways
- 5. Fat is burned on the wick of carbohydrates

• The overall reaction for one turn of the TCA cycle is:

ENERGY YIELD OF KREBS CYCLE (<u>NEW system</u>):

- ENERGY YIELD OF KREBS CYCLE (old system):
- 3 ATP in step 4 from oxidation of NADH.
- 3 ATP in step 6 from oxidation of NADH.
- 1 GTP in step 7 substrate level.
- 2 ATP in step 8 from oxidation of FADH2.
- 3 ATP in step 10 from oxidation of NADH.
- So, total yield **12** ATPs: 11 ATPs from
 respiratory chain & one ATP from substrate
 level.

Don't worry about numbering of reactions as numbers vary from author to author; imp thing is to know the NAME of reaction where NADH+H... is produced

Ste no.	p Reactions	Co- enzyme	ATPs (old- calcu- lation)	ATPs (new calcu- lation)
3	Isocitrate → alpha ketoglutarate	NADH	3	2.5
4	Alpha ketoglutarate → succinyl CoA	NADH	3	2.5
5	Succinyl CoA → Succinate	GTP	1	1
6	Succinate → Fumarate	FADH ₂	2	1.5
8	Malate → Oxaloacetate	NADH	3	2.5
		Total	12	10

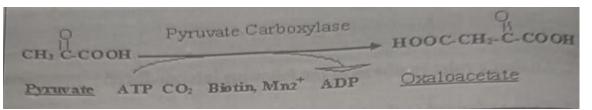
Significance/importance of Krebs cycle (2 of 2)

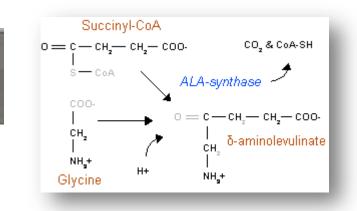
- 6. Excess carbohydrates are converted as neutral fat
- 7. No net synthesis of carbohydrates from fat
- Carbon skeletons of amino acids finally enter the citric acid cycle
- 9. Amphibolic pathway
- 10. Anaplerotic role

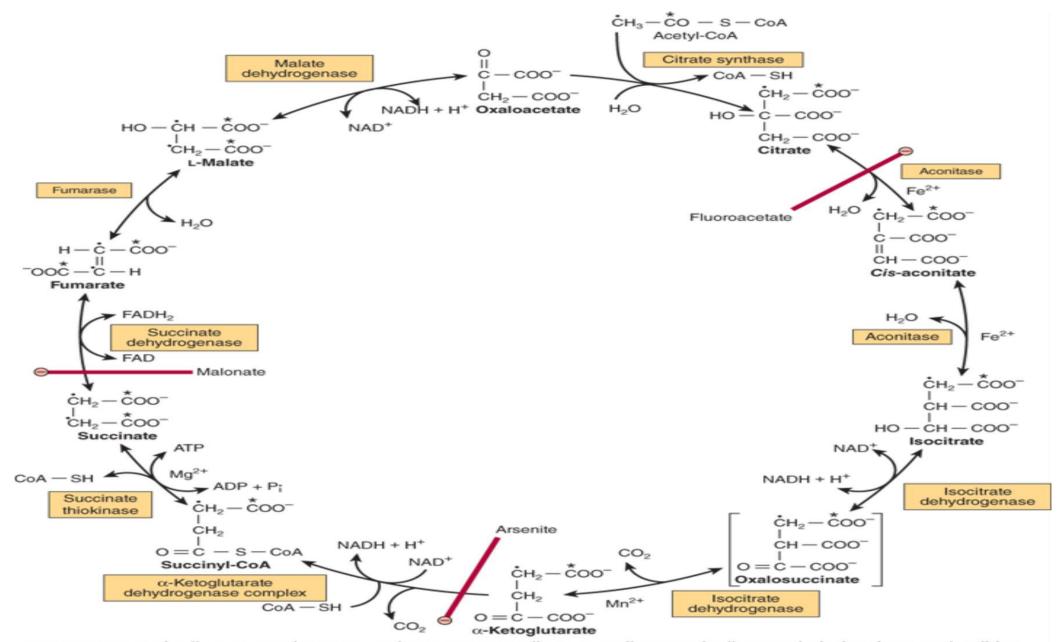
Amphibolic aspects of Krebs cycle (serve as catabolic and anabolic pathway)

Catabolic role

Anabolic role:

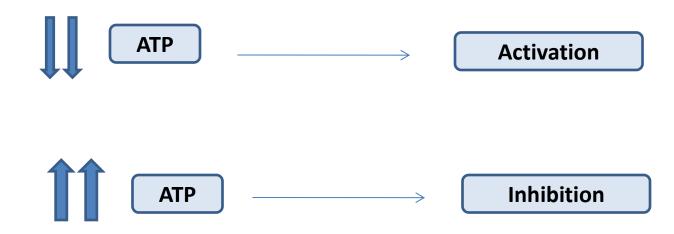

- Citrate → acetyl coA + oxaloacetate (citrate lyase in cytoplasm) → FA synthesis
- Non essential amino acids

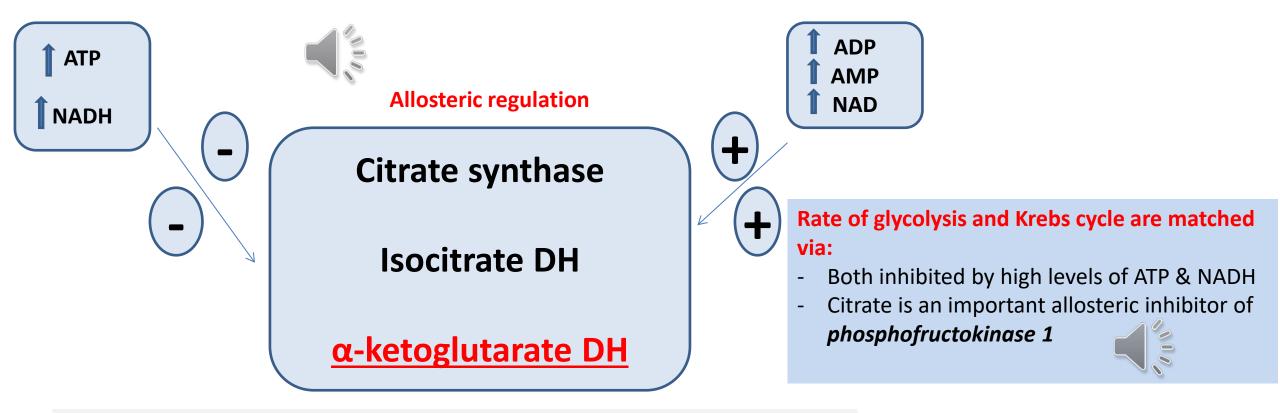

- Aminolevulinate required in heme synthesis
- Gluconeogenesis


Anaploretic reactions to replenish Krebs cycle intermediates:

- Carboxylation of pyruvate to oxaloacetate

- Transamination reactions




Source: V. W. Rodwell, D. A. Bender, K. M. Botham, P. J. Kennelly, P. A. Weil: Harper's Illustrated Biochemistry, 13th Edition www.accessmedicine.com

Copyright @ McGraw-Hill Education. All rights reserved.

Regulation of Krebs cycle :

• The main function of Krebs cycle is ATP production so:

Substrate availability is required for Krebs cycle:

- NAD and FAD: NADH+H and FADH2 must be re-oxidised via active respiratory chain
 - Active respiratory chain needs high oxygen and high ADP concentrations
- Acetyl coA (via glucose oxidation, FA & KB oxidation and catabolism of ketogenic AA)
- Oxaloacetate (from malate, aspartate and pyruvate)

Table 18.2. Metabolic defects of oxidative metabolism

Enzymes	Reactions catalyzed Abnormalities			
Pyruvate dehydro- genase	Pyruvate → acetyl CoA	Lactic acidosis Neurological disorders		
Acyl CoA- dehydro- genase	Fatty acyl CoA → alpha, beta- unsaturated fatty acyl CoA	Organic aciduria, glu- taric aciduria, acido- sis, hypoglycemia Electron flow from FAD → CoQ affected		
Pyruvate carboxylase	Pyruvate → Oxaloacetate	Oxaloacetate needed for sparking TCA cycle is deficient. Lactic acidosis, hyperammonemia and hyperalaninemia		