

Biochemistry

Title = TCA Lec no = 12 Done By = Baraa Safi

Krebs cycle (tricarboxylic acid cycle; TCA)

Ahmed Salem, MD, MSc, PhD, FRCR

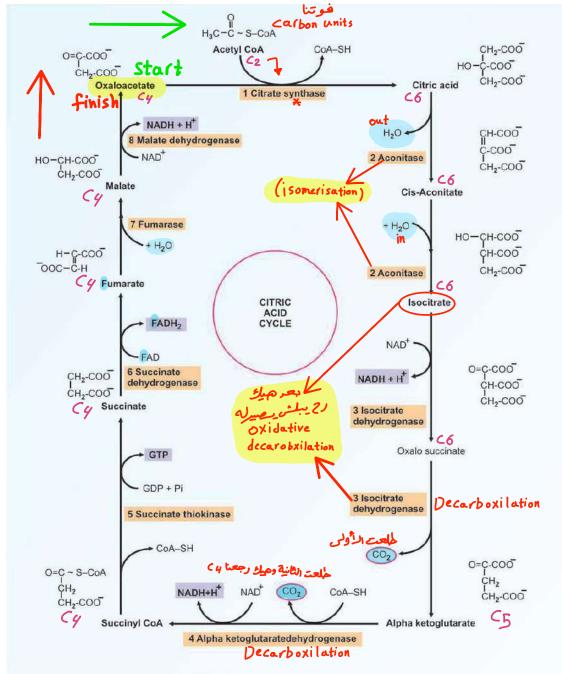
Introduction

Albert Szent-Gyorgyi NP 1937 1893-1986

Alexander George Ogston 1911-1996

 Name: tri-carboxylic acid cycle (TAC), Krebs cycle, or citric acid cycle

- مما
- It is the major common pathway of oxidation of CHO, lipids & protein (they all yield acetyl coA)
 - Generates 12 ATP (old) or 10 ATP (new) + 2 CO2
- Site: totally in mitochondria & generates high amount of energy -> mitochondria is power house of cell
- To start, you need one molecule of acetyl coA & one molecule of oxaloacetate


Location of reactions:

-Glycolysis occurs in cytoplasm

Pyrovate enters the mitochondria by specific Carrier, and here it

turns to Acctylcoa.

- ACctyl COAthat comes from beta oxidation it also be synthesised in mitochondria

Acetyl CoA (2 carbon), enters the cycle. These are released as CO₂ in steps 3 and 4. So Acetyl CoA is completely oxidised by the time cycle reaches alpha ketoglutarate.

All reactions are readily reversible; except 1st and 4th steps

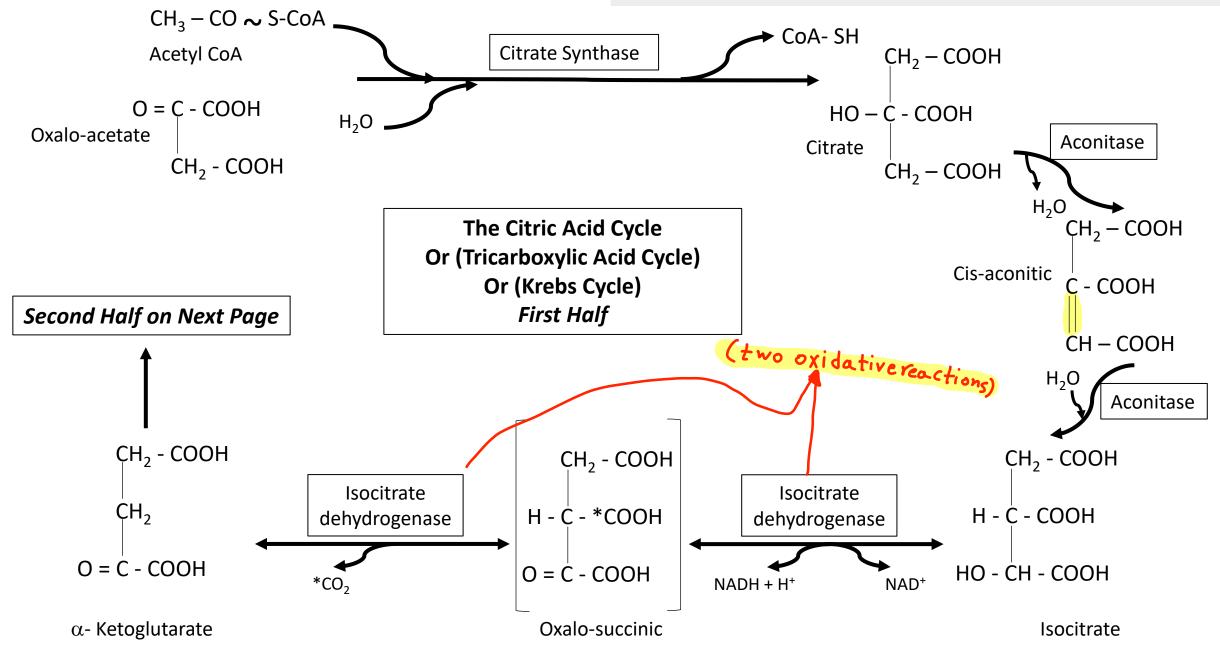
End result:

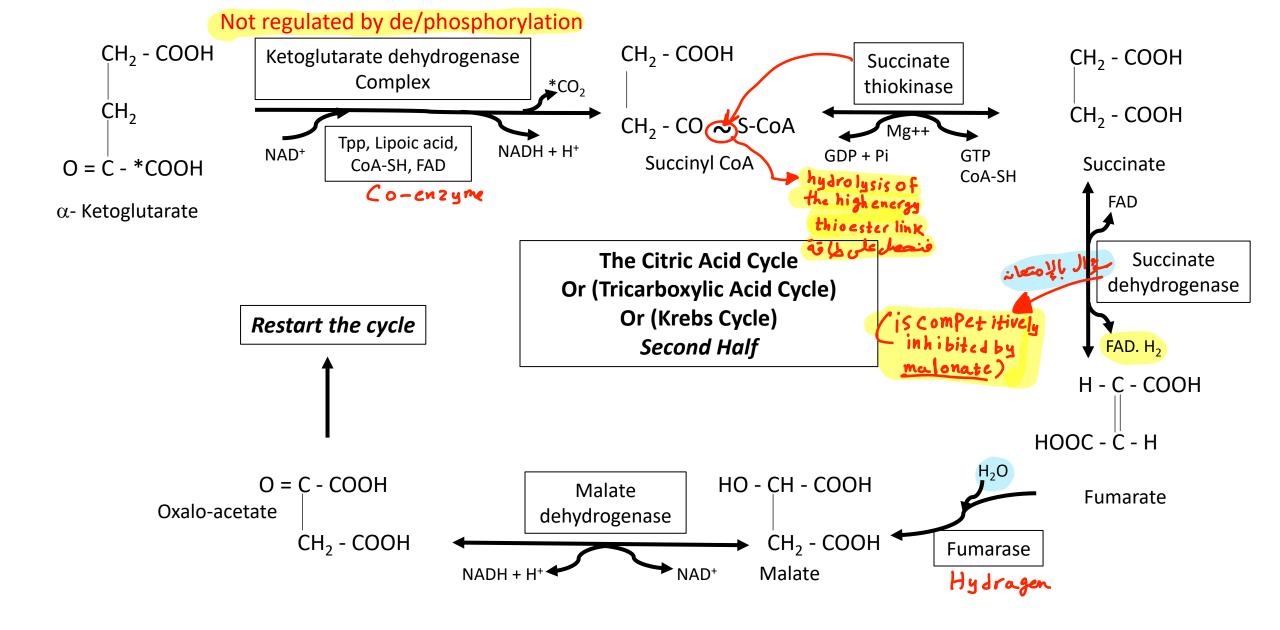
2 carbons from acetyl coA leave as 2 x CO2 3/4 Energy captured:

1 x GTP 5

3 x NADH+H 3/4/8

1 x FADH2 6


(co2) متطلع أ ثناء الد(cycle) بتطلع على مكل (C) بخكل (C)


(Ketolysis)/(Ketogenic aminoacid)/(Fatty acid oxydation)/(Glycolysis)ا قلمة عا (Pyrovate) من (Acetyl (مه) من عن منده - (ATP) المرتب من المراجعة المراجعة

- the reaction from a-Ketoglutarate to SuccingleOA by Ketoglutarate dehydrogenase complex

is the important step in the Krebs cycle.

Reversible vs irreversible reactions: look in upcoming slides

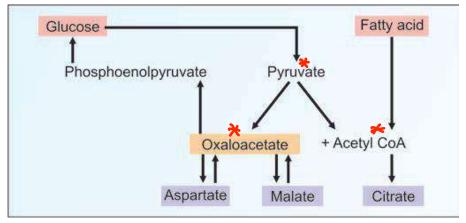
(20ATP) فبصغي الإناج (Krebscycle) للأنه إليانتاج (Acetyl CoA) فبصغي اليانتاج (20ATP)

Pathway	Step	Enzyme	Source	Method of ATP formation	No of ATP gained per (new calcu	rglucose	No of ATPs as per old calculation
Glycolysis	1	Hexokinase	-		Minus	1	Minus 1
Do	3	Phospho- fructokinase	-		Minus	1	Minus 1
Do	5	Glyceralde- hyde-3-P DH	NADH	Respiratory chain	2.5 x 2 =	5	3 x 2 = 6
Do	6	1,3-BPG kinase	ATP	Substrate level	1 x 2 =	2	1 x 2 = 2
Do	9	Pyruvate kinase	ATP	Substrate level	1 x 2 =	2	1 x 2 = 2
Pyruvate to Acetyl CoA	-	Pyruvate dehydrogenase	NADH	Respiratory chain	2.5 x 2 =	5	3 x 2 = 6
TCA cycle	3	Isocitrate DH	NADH	Respiratory chain	2.5 x 2 =	5	3 x 2 = 6
Do	4	alpha keto glutarate DH	NADH	Respiratory chain	2.5 x 2 =	5	3 x 2 = 6
Do	5	Succinate thiokinase	GTP	Substrate level	1 x 2 =	2	1 x 2 = 2
Do	6	Succinate DH	FADH ₂	Respiratory chain	1.5 x 2 =	3	2 x 2 = 4
Do	8	Malate DH	NADH	Respiratory chain	2.5 x 2 =	5	3 x 2 = 6
Net generation in glycolytic pathway						= 7	10 minus 2= 8
Generation in pyruvate dehydrogenase reaction						5	= 6
Generation in citric acid cycle						20	= 24
Net generation of ATP from one glucose mol = 3							= 38

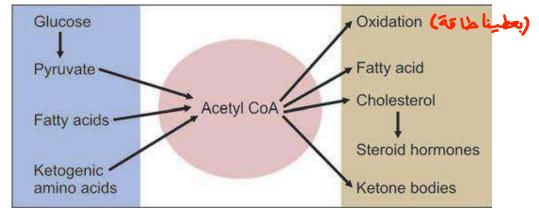
1.5 x 2 for FADH2 if glycerol phosphate shuttle

اذا بدأت من (lactate) وبعد هيك صنعت (Glucose) وبعد هيك حرقته بال(krebs cycle) بدنا نفكر من (4) منطلعات: الأول أنّي بدي أحول منه (Lactate) إلى (Provate) والتيستنتج (NADH) وكما أعلم أنني أحتاج (2) عشانه هدول (3C) والجلوكوز (6C) والجلوكوز (6C) والجاوكوز (6C) والجاوكوز (6C) والجاوكوز (6C) والجاوكوز (6C) (2 NADH) يعني (SATP) .

الكاني أنه بدي أحول منافي إلى (Pyrovate) عند طريعة الر (gluco neo genesis) عند طريعة الر (Pyrovate) والتي ستسلك من (Pyrovate) وستستهلك (ATP) وتستهلك (ATP)


الثالث أنه أناعث ادخه بـ (Rrebs Cycle) بدي (Acetyl CoA) وأنا عارف أنه باله (Glucose) منه (Glucose) بانتج عندي (Acetyl CoA) بنتج عندي (Acetyl CoA) ينتر عند ال (Acety I COA) والى (Pyrovate) ينتر عند ال (Acety I COA) ينتر عند ال

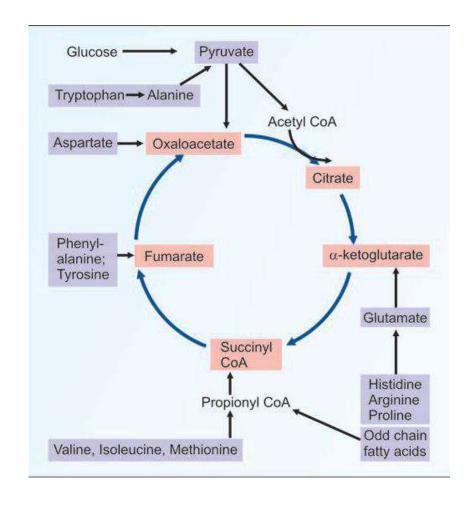
26 = 11 - 37


Important facts of Krebs cycle

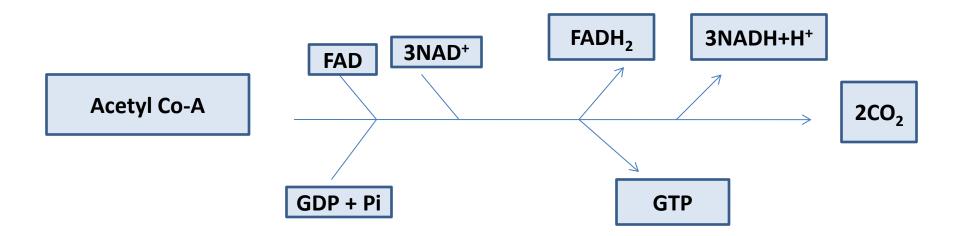
- Contrary to glycolysis, Krebs cycle can only happen under aerobic conditions
- Enzymes of TCA are found in the mitochondrial matrix, in close proximity to the enzymes of the respiratory chain
- Different isocitrate dehydrogenases are seen (isoenzymes)
 - NAD+ specific in mitochondria
 - NADP+ specific in cytoplasm
- Alpha ketoglutarate dehydrogenase is irreversible step(the only always irreversible)
 - Citrate synthase is irreversible but body can reverse it via ATP-citrate lyase
- (isocitrate dehydrogenases) IDH step of the citric acid cycle is often (but not always) an irreversible reaction due to its large negative change in free energy

Oxaloacetate as a "catalyst" and junction point of metabolism

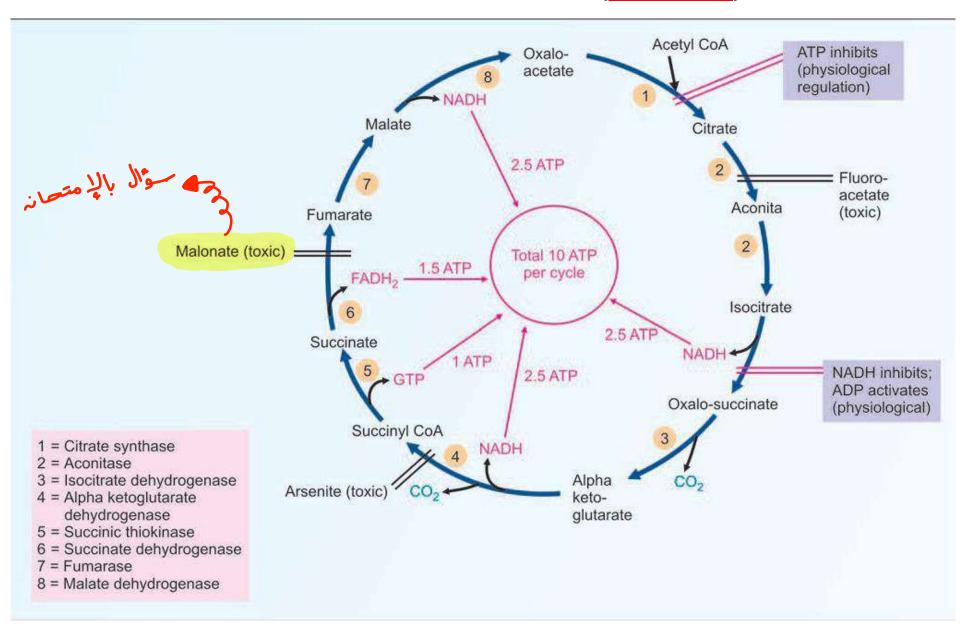
(***) حفظ ال (structure) اعجم


Sources and utilization of acetyl coA

Significance/importance of Krebs cycle (1 of 2)


- Complete oxidation of acetyl CoA
- ATP generation
- Final common oxidative pathway
- Integration of major metabolic pathways
- 5. Fat is burned on the wick of carbohydrates

(carbo hydrates are requird for fat oxidation)


((carbohydrate) عنه طريقه وجود الا(fat))

• The overall reaction for one turn of the TCA cycle is:

ENERGY YIELD OF KREBS CYCLE (NEW system):

- ENERGY YIELD OF KREBS CYCLE (old system):
- 3 ATP in step 4 from oxidation of NADH.
- 3 ATP in step 6 from oxidation of NADH.
- 1 GTP in step 7 substrate level.
- 2 ATP in step 8 from oxidation of FADH2.
- 3 ATP in step 10 from oxidation of NADH.
- So, total yield 12 ATPs: 11 ATPs from respiratory chain & one ATP from substrate level.

Step Reactions no.		Co- enzyme	ATPs (old- calcu- lation)	ATPs (new calcu- lation)
3	Isocitrate → alpha ketoglutarate	NADH	3	2.5
4	Alpha ketoglutarate → succinyl CoA	NADH	3	2.5
5	Succinyl CoA → Succinate	GTP	1	1
6	Succinate → Fumarate	FADH ₂	2	1.5
8	Malate → Oxaloacetate	NADH	3	2.5
		Total	12	10

Don't worry about numbering of reactions as numbers vary from author to author; imp thing is to know the NAME of reaction where NADH+H... is produced

Significance/importance of Krebs cycle (2 of 2)

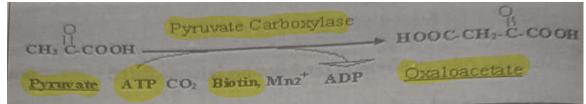
- 6. Excess carbohydrates are converted as neutral fat (6 | wcose → Pyrovate → Acetylco A → fat)
- 7. No net synthesis of carbohydrates from fat
- Carbon skeletons of amino acids finally enter the citric acid cycle
- 9. Amphibolic pathway
- 10. Anaplerotic role

Amphibolic aspects of Krebs cycle (serve as catabolic and anabolic pathway)

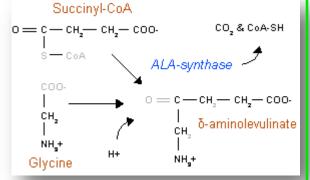
Catabolic role

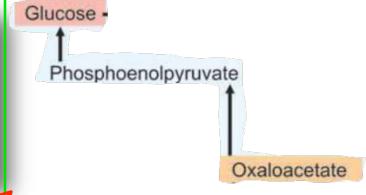
Anabolic role: Synthesis of some important intermediate

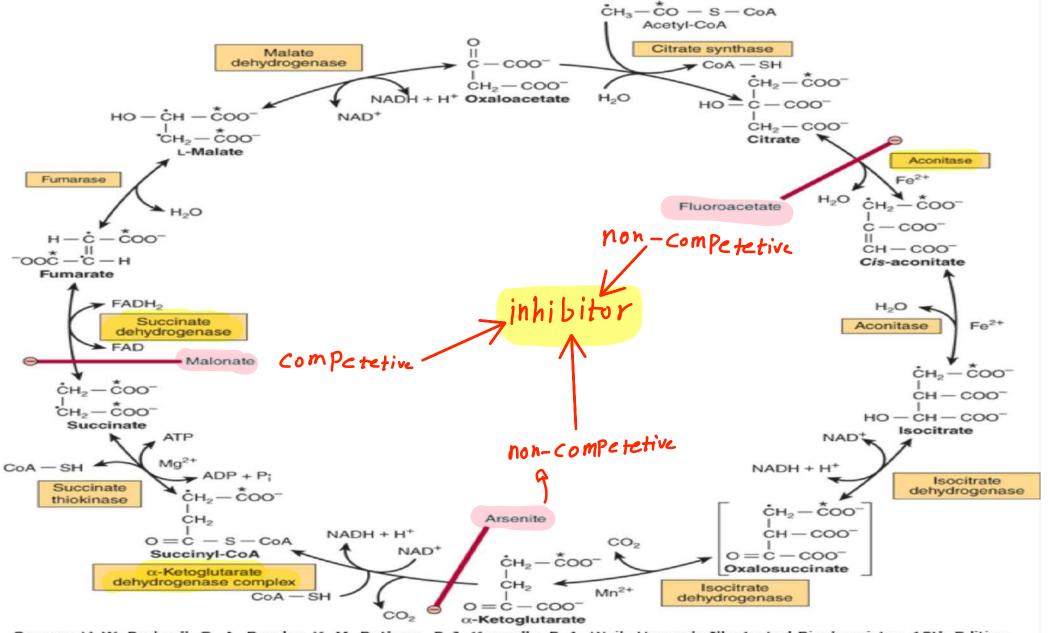
Citrate \Rightarrow acetyl coA + oxaloacetate (citrate lyase in cytoplasm) \rightarrow (FA synthesis) \rightarrow (آمره ینسو (۸دوایادهم) ما انتفایا که در انتفایا که


- Non essential amino acids

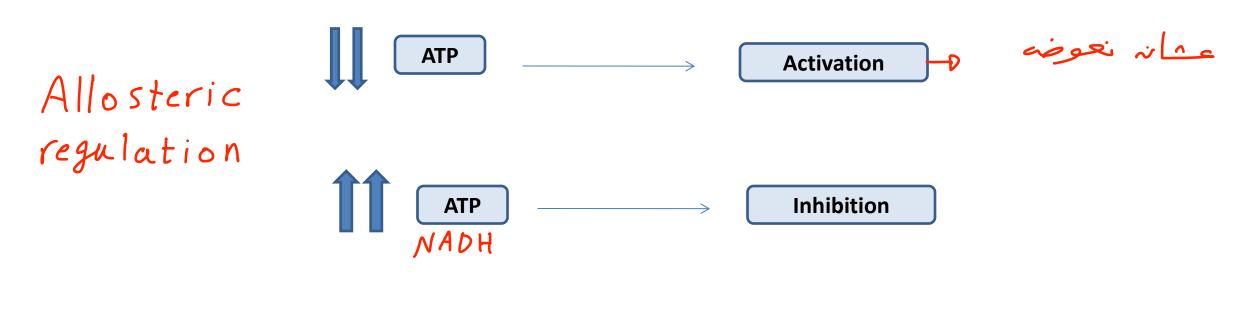
Pyruvate Alamine
Oxaloacetate Aspatrate
α-ketoglutartae Glutamate

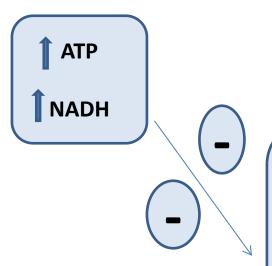

- <u>Aminolevulinate</u> required in heme synthesis
- Gluconeogenesis


Anaploretic reactions to replenish Krebs cycle intermediates:


- From Amino acid like the table at the bottom left of this Page
- Carboxylation of pyruvate to oxaloacetate

- Transamination reactions

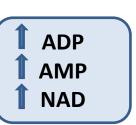




Source: V. W. Rodwell, D. A. Bender, K. M. Botham, P. J. Kennelly, P. A. Weil: Harper's Illustrated Biochemistry, 13th Edition www.accessmedicine.com
Copyright © McGraw-Hill Education. All rights reserved.

Regulation of Krebs cycle:

The main function of Krebs cycle is ATP production so:



Allosteric regulation

Citrate synthase

Isocitrate DH

α-ketoglutarate DH

Rate of glycolysis and Krebs cycle are matched via:

- Both inhibited by high levels of ATP & NADH
- Citrate is an important allosteric inhibitor of phosphofructokinase 1

Substrate availability is required for Krebs cycle:

- **NAD and FAD:** NADH+H and FADH2 must be re-oxidised via active respiratory chain
 - Active respiratory chain needs high oxygen and high ADP concentrations

fattyacid

- Acetyl coA (via glucose oxidation, FA & KB oxidation and catabolism of Ketone body ketogenic AA)
- Oxaloacetate (from malate, aspartate and pyruvate)

- (Mebs cyck) رح تسميخل بشكل أسرع سلما تكوند الا (energy) تاعت الخلا يا قليلة .

(regalated and copple) mes (cycle) 11-(respiratory chain)) 20

- (Krebs cycle) أكبرممول لبطاريات منه قبلي (respiratory chain) Il albi (ATP)

ر بوجود (hy poxia) (نقعه congenage) کاد بعمل (hy poxia) بوجود (fad Hz/NADH) عن طریقه آنه بتراکیر (FAD Hz/NADH)

Table 18.2. Metabolic defects of oxidative metabolism

Enzymes	Reactions catalyze		
Pyruvate dehydro- genase	Pyruvate → acetyl CoA (i۲/c ve(sible)	Lactic acidosis— (loc- Neurological disorders	بزیدال (Pyrovate) فبرید ال
Acyl CoA- dehydro- genase	Fatty acyl CoA → alpha, beta- unsaturated fatty acyl CoA	Organic aciduria, glutaric aciduria, acidosis, hypoglycemia Electron flow from FAD -> CoQ affected	
Pyruvate carboxylase	Pyruvate → Oxaloacetate	Oxaloacetate needed for sparking TCA cycle is deficient. Lactic acidosis, hyperammonemia and hyperalaninemia	