

Biochemistry

Title = Metabolism of Lec no =9 Done By = Baraa Safi

I. St

و فا م الم

Metabolism of glycogen

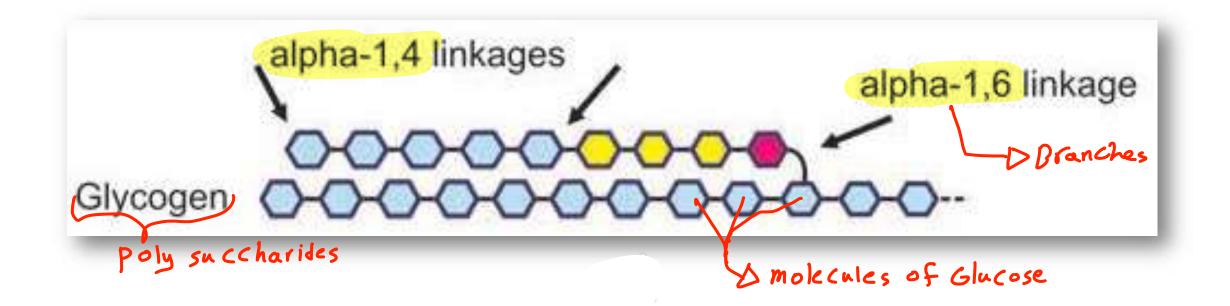
Ahmed Salem, MD, MSc, PhD, FRCR

CHO metabolism	1. Glycolysis a. First phase b. Second phase
	2.Pentosephosphate pathway
	 3.Metabolism of non-glucose sugars a.metabolism of fructose. b.metabolism of galactose c.metabolism of glucuronic acid 3. Glycogen metabolism a. Glycogen synthesis b. Glycogen breakdown

GLYCOGEN METABOLISM

- Glycogen is the major storage form of carbohydrates in cells
- It is stored in the cytosol as granules (all enzymes are cytoplasmic)
- It is present in every cell (but more abundant in liver, muscle):
 - Muscle glycogen (1-2g/100g; appx 400-500g in total): provide rapidly available supply of glucose as fuel for glycolysis during contraction (muscle use only)
 - Liver glycogen (6-10g/100g; appx 100-120g in total): maintaining blood glucose levels during fasting (for whole body)

Its metabolism involves two processes:


- I- Glycogenolysis (Glycogen breakdown)
- II- Glycogenesis (Glycogen formation)

Amino acid (3/fat (2/(gly cogen) (1 : بسمر: 1) Amino acid

* حسا صبح كر (oncentration) هو في ال (muscle) أتل لكن لما تحسب كعبة الم (*nuscle) اللي موجودة بالجسم اللي بال (oncentration) رح تلاقي*صا أكثر صن اللي بال (liver) (600 – 400)

* في فرق بيهالا معون، والى اللي بإلا ، muscle) ! - اللي بالل است (muscle) أنانية جعم الى حالكا (الطاقة بس بتغير منكا الروا، س) أكلا الر انع اكر عمر جدمًا لذلك هو بيعطي كل الجسم فبصافظ على مستوجب المستكر باليم فبخدم كل الجسم

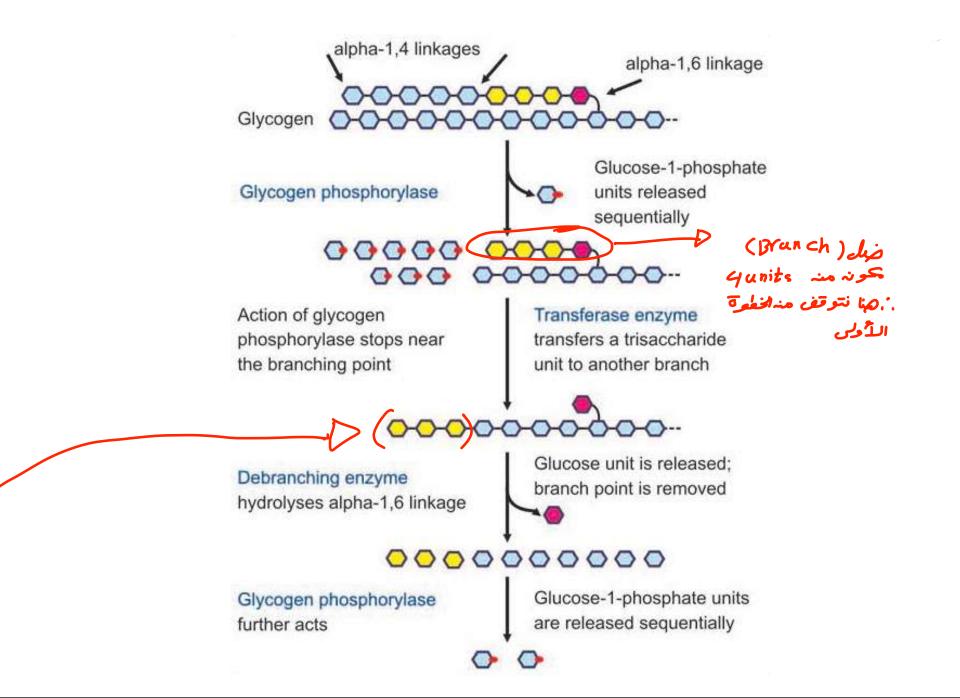
* (كل التغلات اللي الها علاقة بالجلا يكونه تتمن ال (toplasm) *

تسكير الجلايكوجين بتبا بعد(4) ساعات هذالعصبة وبتستعر تقريبا لحد(18) لماعة جعد حاملت من يون الجلايكومين فلازم نفوت يخاصية كانية عناند ندانلا على ستلا السكر اليم Glycogen breakdown (glycogenolysis)

- Starts 4 h after meal (fasting), lasts 12-18h
- Occurs in cytoplasm of cells (except RBCs; does not store glycogen):
 - In liver: glycogen is hydrolysed to glucose to maintain blood glucose level
 - In muscle: glycogen is hydrolysed to glucose 6-P \rightarrow glycolytic pathway to generate ATP
- Glycogenolysis is catalysed:
 - 1st by glycogen phosphorylase → glucose 1-P
 - Then by *debranching enzyme*

 liberate free glucose

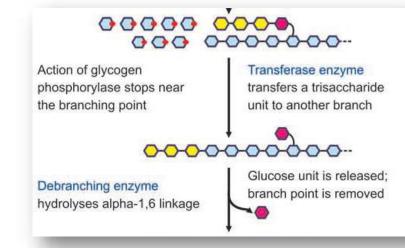
Steps of glycogenolysis (enzymes)


- 1. Glycogen phosphorylase
- 2. Debranching enzyme (bi-functional)
 - A. Glucan transferase
 - B. α 1,6 glucosidase
- 3. Phosphoglucomutase
- 4. Glucose-6 phosphatase

تکر 1. Glycogen phosphorylase

- Catalyses release of glucose 1-P from terminal residue of glycogen by adding inorganic phosphate (phosphorolysis)
 - Glycogen phosphorylase contains pyridoxal phosphate as an integral coenzyme

• The action of glycogen phosphorylase stops when 4 glucose residues are left from the branching point


Glycogen with (n)	Glycogen phosphorylase	→ Glycogen	+	Glucose-1-
	+ Pi (PLP)	with (n-1) glucose	30 4 0	phosphate
glucose				
residues		residues		

2. Debranching enzymes

مشيل التي مسمع تحوفي بعر ال(Brand) . في Glucan transferase .

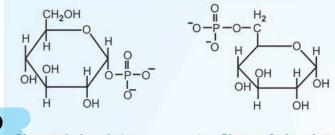
- - It transfers the outer 3 glucose units from the branching point & attaches them to the nearest straight chain
 - This is important to unmask the α 1,6 glucosidic bond at the branching point

 α 1,6 glucosidase

(free Glucose)

- This enzyme removes the last glucose residue at the branch point
 - » This glucose residue is released as free glucose
- \rightarrow both these enzymes will together convert the branched chain into a linear one

» With removal of branches, phosphorylase can proceed with its action

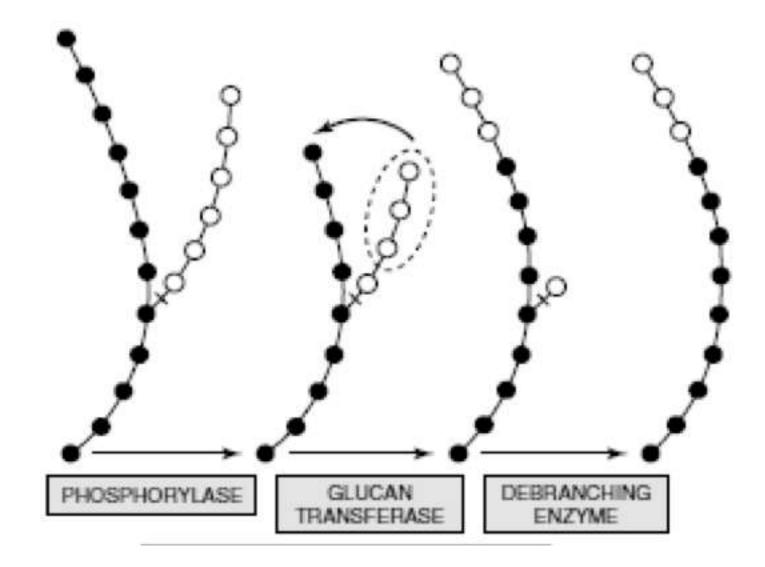

) بعد ال (phosphorelase) أنه يشتخل لأنه نقلت ال (z) لا (chain تريبة وستتيعة .

2) بعمل (unmasking) لحبة البلكرز اللي باللونه الأحصر فب مع الإنديم الثانو ي تتغل ويطلع ال (unmasking) .

(Position) (Position) on (phosphate) بنقل (Position

3. Phosphoglucomutase

This enzyme converts glucose 1-P to glucose 6-P


4. Glucose 6-phosphatase

- Converts glucose 6-P to free glucose
 - It is present mostly in the liver
 - The product of glycogenolysis is free glucose which is released in the blood
- Muscle lacks this enzyme:
 - » Glucose will not be released into blood
 - » Glucose 6-P undergoes glycolysis to produce lactate and ATP for ms contraction

Energy yield (anaerobic):

- Glucosyl unit derived from glycogen ightarrow 3 ATP
- Glycolysis starts from glucose \rightarrow 2 ATP

* أَ نت لوجايب (Glucose molecule) هند(ago) ال رح تعطيلو (عمل) ولكند لومبلث منذ (glucose) مل عنه طريق (مون ينتج عند نا (ZATP) والسبب أنه حونه بتبلث منه (مار موده الم)

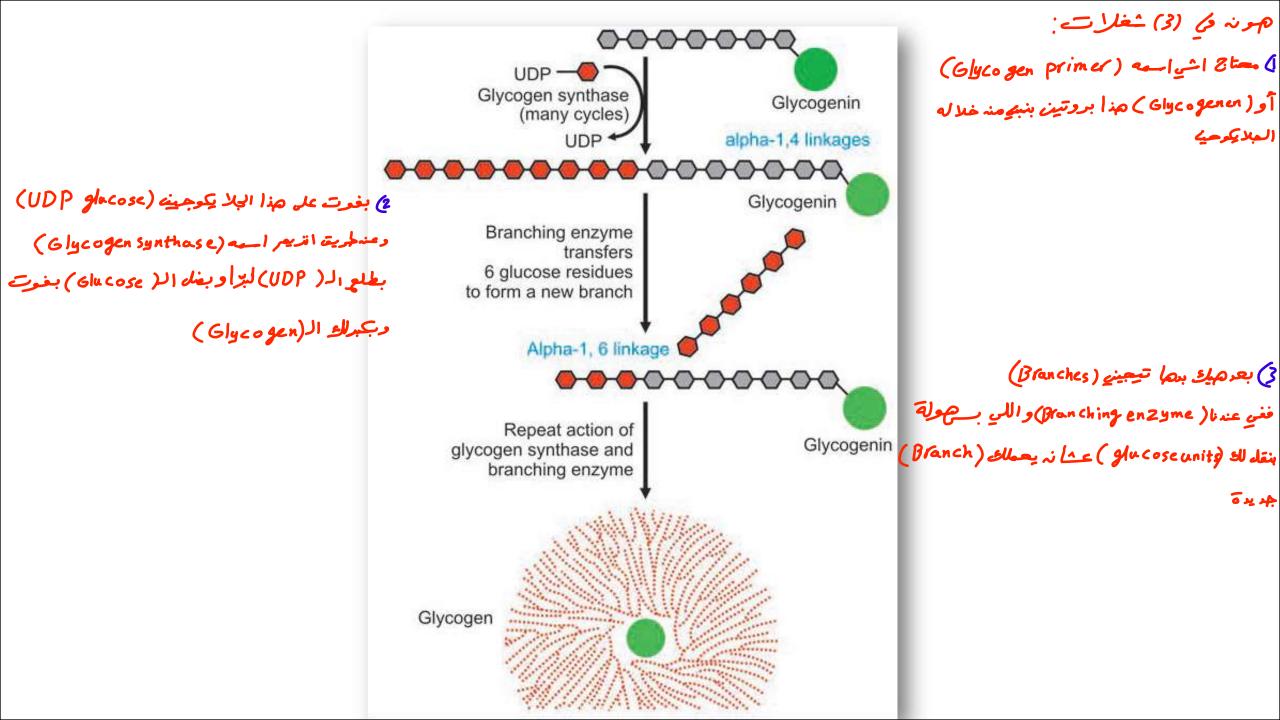
• It is the formation of glycogen from glucose or other hexoses

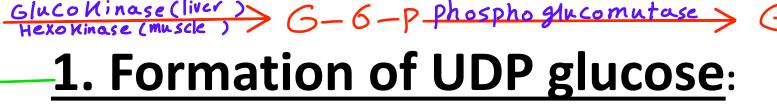
 It occurs in the cytosol of cells (except RBCs) especially in *liver* & *muscles*

 Importance: Storage of excess glucose, or other hexoses taken in food

Steps of glycogenesis

<u>u</u>racil <u>dip</u>hosphate glucose


1. Activation of glucose + formation of UDP glucose*


جلوكوز متأكتن بمعطنا أنه صعر يكوند ال (Building blocks) ال (Glucogen)

- 2. Addition of glucosyl residues نضيف (والمرحب تاعنا
- 3. Formation of branches

*UDP glucose: uracil diphosphate glucose \rightarrow nucleotide sugar made from pyrophosophate group, pentose sugar ribose, glucose, and nucleobase uracil

- involved in formation of glycoproteins
- glycogen precursor
- nucleotide sugar metabolism

 Glucose is phosphorylated to G-6-P by <u>glucokinase</u> (liver) or hexokinase (muscle)

- PG-1-Purityl transferes

- G-6-P is then converted to G-1-P by phosphoglucomutase
- G-1-P uridyl transferase catalyzes formation of UDP-G from G-1-P and UTP with <u>liberation</u> of <u>pyrophosphate</u> (irreversible reaction)
 - UDP glucose is called *activated glucose* and serves as a glucose donor for glycogen synthesis
 UDP-glucose-

UDP-glucose-						
pyrophosphorylase						
Glucose-1	\longrightarrow UDP-glucose					
phosphate +UTP	+ PPi					

جونہ بدنا نصفے ار (U-D-P-G) علی (Glycogen primer) = (Glycogenin) = (Glycogen primer) **2. Addition of glucosyl residues**

ر بروتيني ماسلط بر (oligosaccharide chain) مي مقيقة تمثل عكل الر (معومتيای) ولکنه آبسط) جمع • Glycogen primer: oligosaccharide chain linked by α1,4 glucosidic links ير

attached to protein-CHO nucleus called glycogenin - Glycogen primer may be an <u>old incompletely broken</u> glycogen molecule or a <u>newly formed</u> glycogen primer

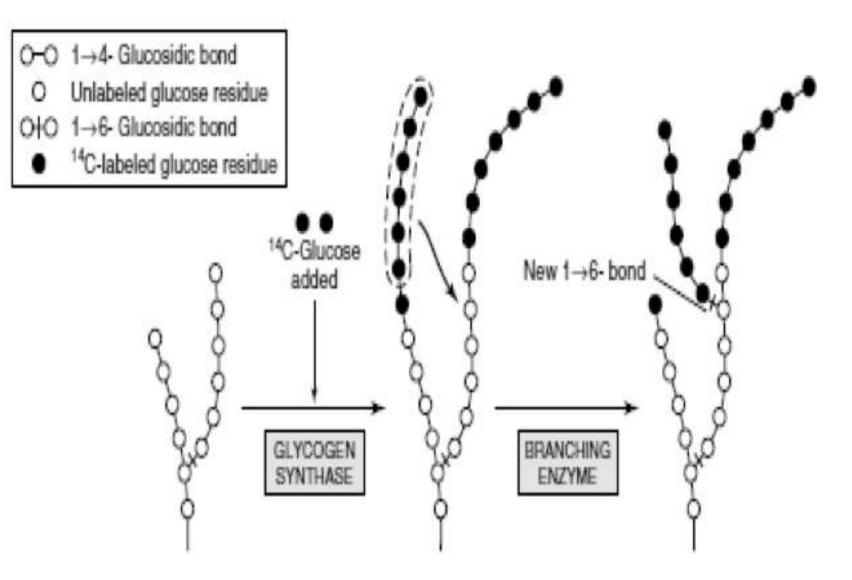
- Glycogenin can undergo autoglycosylation (i.e. bind glucose to its tyrosine residue via OH group)
- Glycogenin binds more glucose units in form of UDPG one by one through $\alpha 1,4$ glucosidic links \rightarrow up to 8 units (primer)

• \rightarrow Glycogen synthase (key enzyme) transfers more activated glucose units from UDPG to the end of glycogen primer (and UDP is removed)


- This repeats until about 12 glucose residues are added

مريعك بجيب (UDP-G) بغينه منها حبات (glucose) وبذيل (UDP) ولا (anch) اولا (UDP)

3. Formation of branches _ بتخليع عنداء احكانية تغزينكمية (Gly cogen) بماحة أصغر


- When chain length is 11-12 residues:
 - A branching enzyme (AKA amylo $1,4 \rightarrow 1,6$ transferse) transfers a block of 6-8 glucose units from the end of glycogen to C6 of glucose:
 - Creating a new α -1, 6-glucosidic bond
 - A new branch appears on which glycogen synthase can act again

المسلما أضبين (Branch) بعل طول المسلمة فبسمير (glycogen synthase) في مجدداً

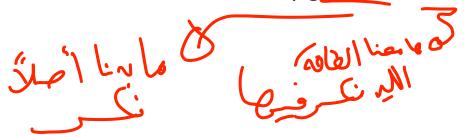
: (Branches) المحمية الر (Branches) : - بتحافظ على الر النا stability)

The combined action of glycogen synthase and branching enzyme \rightarrow a highly branched glycogen structure

Biological impotence of branching

- Makes glycogen more stable
- Increases number of ends → increases number of sites accessible to glycogen synthase (amplifying cascade)
- Increase sites of breaking attacks by phosphorylase → facilitating glycogen breakdown

Regulation of glycogen metabolism


• Principle enzymes controlling this are:

- They are controlled by:
 - Allosteric control
 - Covalent modification

Regulation of glycogen metabolism

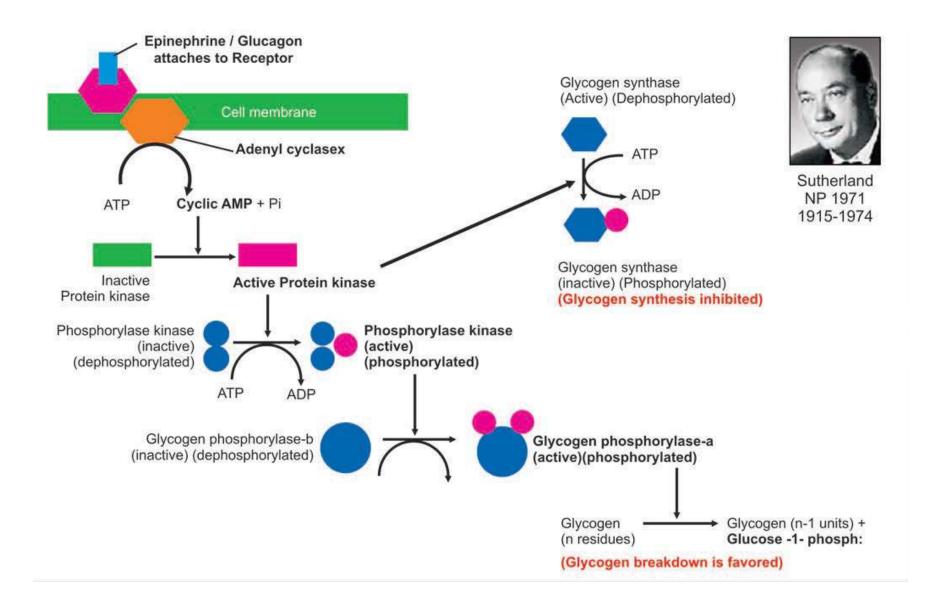
- Allosteric control (عنه طريسقال (Allosteric site)
 - Glycogen synthase
 - Stimulated by glucose 6-P & ATP
 - Inhibited by glycogen (product)
 - Glycogen phosphorylase
 - Stimulated by AMP
 - Inhibited by glucose & ATP

Regulation of glycogen metabolism

- Covalent modification (more, less a ctive) محصودين بصحفتين (vore, less a ctive) نه تفصه لازم تفصم أنه (*)
 - **¥**− Glycogen synthase: active in *dephosphorylated* form
 - ★— Glycogen phosphorylase: active in *phosphorylated* form
 - Covalent modification of these enzymes is through hormones that act through the 2nd messenger cAMP
 - Glycogen synthase exists in 2 forms (interconverted by specific enzyme):
 - Less active phosphorylated form (glycogen synthase b)
 - More active *dephosphorylated* form (glycogen synthase a)
 - Glycogen phosphorylase exists in 2 forms:
 - Less active *dephosphorylated* form (phosphorylase b)
 - More active phosphorylated form (phosphorylase a)

بعر ما تأكل ويكونه كمية (Glucose) كبيرة During fed state

* الأنسولين ما بحب مصوف كميات كبيرة بالم فبطلع مذالبنكرياس، وبعد (dephosphorylation)


- Insulin dephosphorylates both <u>glycogen</u> synthase and <u>glycogen</u> <u>phosphorylase</u> via 2 mechanisms:
 - Activation of phosphodiesterase enzyme → inactivates <u>cAMP to AMP</u> → inhibits protein kinase
 (Phosphore lation) حياد اللي بعدل (Phosphore lation)
 - Activation of phosphatase enzyme which removes P:
 - » Dephosphorylation of glycogen synthase \rightarrow its activation \rightarrow GLYCOGENESIS
 - » Dephosphorylation of glycogen phosphorylase \rightarrow its inactivation \rightarrow inhibition of glycogenolysis

(الشیخصی و حص حیاتی مستابع سی منظری می منابع من می منابع During fasting state

Glucagon (in liver) & epinephrine (in liver <u>& muscle</u>):

- Activate a membrane receptor (G protein) → activates adenyl cyclase (a membrane linked enzyme) → converts ATP to cAMP
- cAMP activates cAMP dependent protein kinase → phosphorylates (inactivates) glycogen synthase → inhibits glycogensis
 - Activation of protein kinase → activate phosphorylase kinase enzyme → stimulation of glycogen phosphorylase → glycogenolysis

Allosteric regulation in muscle exercise:

- Muscle phosphorylase is <u>allosterically activated by</u>
 <u>AMP</u> → glycogenolysis
 <u>Lix muscle exercise</u>)
- AMP is increased during muscular exercise and allosterically inhibited by:
 - <u>ATP & G-6-P</u> because their elevated levels indicate that the cell is not in need of more energy and there is no need to breakdown glycogen.

During muscle exercise:

 \uparrow release of Ca from sarcoplasmic reticulum \rightarrow activates glycogen phosphorylase \rightarrow glycogenolysis

Induction and repression of the key enzyme:

Carbohydrate feeding → induce insulin → ↓
 synthesis of key enzyme (repression) so glycogenolysis is inhibited.

Fasting → ↓ insulin and ↑ anti-insulin which increase synthesis of key enzyme (induction) so glycogenolysis is stimulated.

ح (لا يوجد المتحانة ميد أكو فاينال مخلوا منه حذا الجه ول Glycogen storage diseases

Inborn errors of glycogen metabolism

Classified into different types according to the deficient enzyme

	Туре	Disease Name	Defective enzyme	Glycogen levels	Glycogen structure	Principal tissue affected	Characteristic feature
Most common	I	Von Gierke's disease	Glucose-6-phosphatase (G6pase)	High	Normal	Liver, kidney	I: Fasting hypoglycaemia (not responding to adrenaline), hepatomegaly
	и	Pompe's disease	α-1,4 Glucosidase	Very high	Normal	All organs	II: early death before 2 years
	ш	Cori's Forbes' disease	Debranching enzyme	High	Short outer branches	Liver, Heart, Muscle	III: mild fasting hypoglycaemia
	IV	Andersen's disease	Branching enzyme	Normal	Long outer branches	Liver, Spleen, Muscle	IV: hepatosplenomegaly, mild hypoglycaemia, results in synthesis of straight chain glycogen only
	v	McArdle's disease	Muscle Phosphorylase	High	Normal	Muscle .	V: exercise intolerance, painful
	VI	Hers' disease	Liver Phosphorylase	High	Normal	Liver	muscle cramps during exercise
	VII	Tarun's disease	Phosphofructokinase	High	Normal	Mussle	
	VIII	Hepatic phosphorylase kinase deficiency	Phosphorylase kinase	High	Normal	Liver	