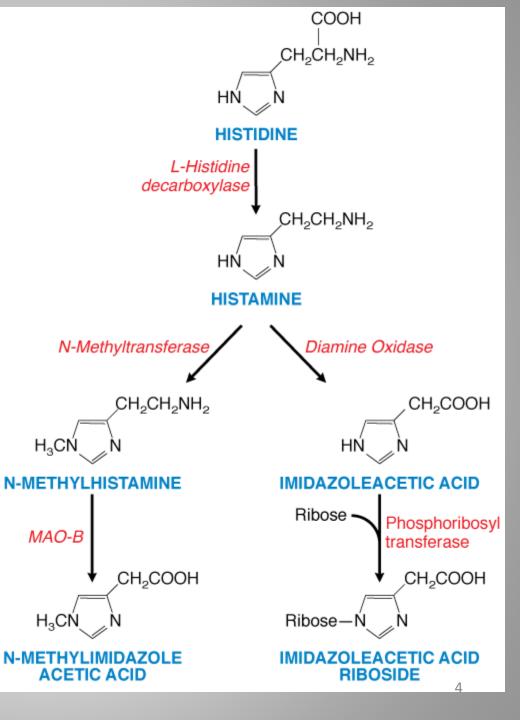
Histamine and Antihistaminics

Autacoids

These are diverse substances **produced by wide variety of cells**, having **intense biological activity**, but **act locally** at the site of synthesis and release

- Types of autacoids:
 - Amine autacoids
 - Histamine, 5-HT (Serotonin)
 - Peptide autacoids
 - Plasma kinins (Bradykinin, Kallidin), Angiotensinogen
 - Lipid autacoids
 - Prostaglandins, Leukotrienes, PAF


Histamine - Introduction

is an endogenous substance synthesized, stored and released in

(a) *mast cells*, which are abundant in the skin, GI, and the respiratory tract,
(b) *basophils* in the blood, and
(c) some *neurons* in the CNS and peripheral NS

Synthesis & Storage

- Histamine is formed by the decarboxylation of the amino acid histidine by the enzyme L-histidine decarboxylase, found in every mammalian tissue that contains histamine.
- These cells synthesize histamine and store it in secretory granules.

The different Histamine receptors

	Location	Effect	Treatment
H1	 1 -smooth muscles 2-vascular endothelial cells:Vasodilatation Of small BV -Smooth muscle of large vessels- vasoconstriction 3-CNS:+Ach +glutamat 4-excocrine glands:salivary,lacrymal, GIT 	Mediate an increase in vascular permeability at sites of inflammation induced by histamine	Allergies
H2	-gastric parietal cells -heart -negative feedback release of histamine.	Increases the release of gastric acid	Stomach ulcers
H3	Found mostly in the CNS:antagonise action of H1:-ve feedback	Neural presynaptic receptor, may function to release histamine	Unknown:sleep awake cycle.
H4	chemotaxis	Unknown	treatment of autoimmune diseases. (rheumatoid arthritis

Histamine – The Triple Response

Subdermal histamine injection causes:

- Red spot (few mm) in seconds: direct vasodilation effect , H1 receptor mediated
- 2. Flare (1cm beyond site): axonal reflexes, indirect vasodilation, and itching, H1 receptor mediated
- Wheal (1-2 min) same area as original spot, edema due to increased capillary permeability, H1 receptor mediated

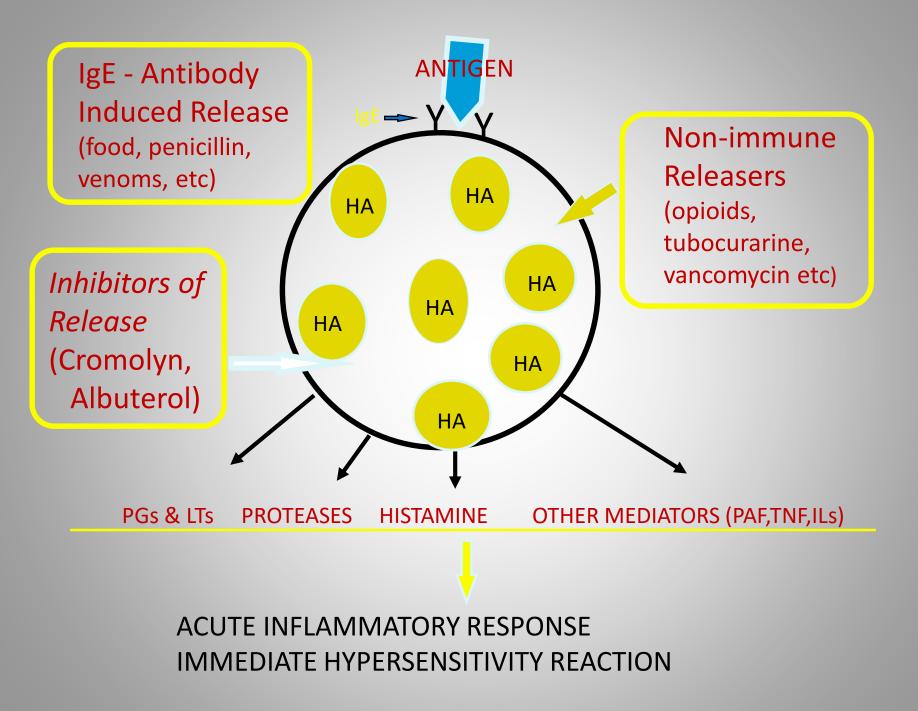
Pharmacological actions

Heart :

It increases the force of contraction of both atrial and ventricular muscle

Due to H₂ receptors

- Slowed AV conduction (-ve dromotropic effect) which involves mainly H1 receptors
- -- blood pressure


Pharmacological actions

- Visceral Smooth Muscles
 - Bronchoconstriction
 - Abd. Cramps & colic
- Glands

- **↑** in gastric secretion
- Sensory nerve endings

Pathophysiological roles

- Cellular mediator of immediate hypersensitivity reaction and acute inflammatory response
- Anaphylaxis
- Seasonal allergies
- Duodenal ulcers
- Gastrinoma (Zollinger-Ellison Syndrome)

Antagonists of Histamine

Physiological antagonists :

Adrenaline – effects are opposite to effects of histamine

- Histamine release Inhibitors : Mast cell stabilizers : Cromoglycate
- Histamine receptor blockers : H1 blockers and H2 blockers

H₁-RECEPTOR ANTAGONISTS

• <u>1st Generation:</u>

- Highly sedatives: Diphenhydramine, Dimenhydrate
- Moderately: Cyproheptadine, Meclizine and Cinnarizine
- Mild: Chlorpheniramine, Cyclizine, Clemastine
- **<u>2nd Generation</u>**: Fexofenadine, Loratidine

First-generation H1 antihistamines	Second-generation H1 antihistamines Usually administered once or twice a day	
Usually administered in three to four daily doses		
Cross the blood-brain barrier (lipophilicity, low	Do not cross the blood-brain barrier	
molecular weight, lack of recognition by the	(lipophobicity, high molecular weight,	
P-glycoprotein efflux pump	recognition by the P-glycoprotein efflux pump)	
Potentially cause side-effects (sedation/	Do not cause relevant side-effects	
hyperactivity/insomnia/convulsions)	(sedation/fatigue/hyperactivity/convulsions), in	
	the absence of drug interactions	
Case reports of toxicity are regularly published	No reports of serious toxicity	
No randomized, double-blind, placebo-controlled	Some randomized, double-blind, placebo-	
trials in children	controlled studies in children	
Lethal dose identified for infants/young children	Do not cause fatality in overdose	

CHART 4: Differences between first and second-generation H1 antihistamines

Antihistaminics Pharmacokinetics

- Absorption: Antihistaminics (H₁ receptor antagonists) are well absorbed from oral and parenteral routes
- **Distribution:** widely in the body and enter brain. Newer compounds penetrate the brain poorly.
- Metabolism: In liver
- Excretion: In urine

Pharmacological Actions

- CNS depression: (More with first generation)
 - Sedation and drowsiness
 - Some have antiemetic and antiparkinsonian effects
- Antiallergic action: Type- I reactions are suppressed
- Anticholinergic actions (More with first generation)
 - Dryness of mouth , Blurring of vision
 - Constipation
 - Urinary retention

Pharmacological Actions

• BP

-Fall in BP with IV injection (all) but not with Oral

- direct smooth muscle relaxation or α adrenergic blockade

Antagonism of Histamine

- Effectively block:
- * Bronchoconstriction
- * Contraction of sm. Mus.
- * Triple response

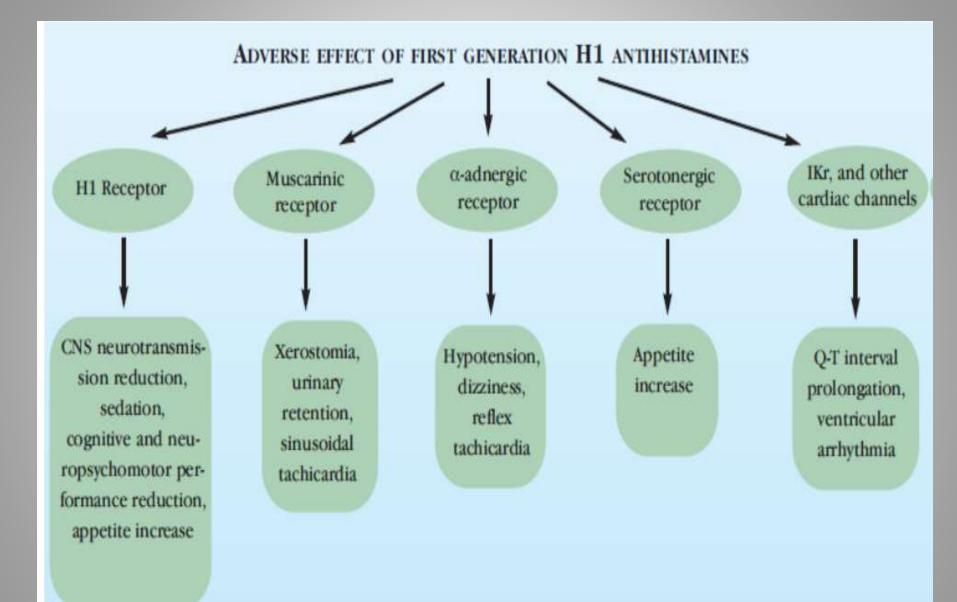


FIGURE 5: Symptoms and signs of the adverse effects of first-generation H1 antihistamines

Second Generation Agents Adverse effects:

have a much lower incidence of adverse effects than the first generation agents.

terfenadinand astemizole were removed from the market due to effects on cardiac K+ channels prolong QT interval (potentially fatal arrhythmia *"torsades de pointes"*)

- Cetirizine appears to have more CNS actions (sedative)
- Erythromycin and ketoconazole inhibit the metabolism of fexofenadine and loratadine in healthy subjects, this caused no adverse effects.

Pharmacological Actions

- Antimotion sickness effect
- Antiemetic
- Antiparkinsonism
- Antivertigo

Antihistaminics (Uses)

- Allergic disorders,
- Other conditions involving histamine: Insect bite, Ivy poisoning etc.
- Common cold
- Motion sickness
- Vertigo
- Pre anesthetic medication
- Cough
- Parkinsonism
- As sedative, hypnotic, anxiolytic

H₂ receptor antangnists

• Cimetidine , Ranitidine, Famotidine

Clinical uses-

- Peptic Ulcer and Duodenal Disease
- Gastric Ulcer: reduce symptoms promote healing for benign gastric ulcers
- Gastroesophageal Reflux Disorder (erosive esophagitis) Hypersecretory Disease:
- Zollinger-Ellison syndrome: acid hypersecretion -- caused by gastrin-secreting tumor

THANK YOU