

Humoral Immunity

Immunology Lecture 9 Ashraf Khasawneh Faculty of Medicine The Hashemite University

Introduction

- Arise and mature in the red bone marrow
- Found primarily in the spleen, lymph nodes, and MALT (The **mucosa-associated lymphoid tissue** (**MALT**), also called mucosa-associated lymphatic tissue, is a diffuse system of small concentrations of lymphoid tissue found in various submucosal membrane sites of the body, such as the gastrointestinal tract, thyroid, breast, lung, salivary glands, eye, and skin).
- Small percentage of B cells circulates in the blood
- Major function is the secretion of antibodies

Importance

- Humoral immunity helps cellular immunity to perform action through interaction of T helper cells with B cells
- Is the arm of adaptive immunity in killing extracellular microbes and microbial toxins
- Important in defending against microbes with capsule

B Cells Maturation

- B cells matures in bone marrow independent of antigen, then continue to maturate in peripheral lymphoid organs with the presence of antigen
- Three main steps of maturation:
- 1. Progenitor- Ig alpha and beta- for signal transduction (long tails)
- 2. Pre-B cell- IgM heavy chain, and light chain
- 3. "mature"- IgD

B-1 B cells

- "Innate-like" subset of B cells.
- Appear during fetal life and express IgM but little IgD and display CD5. Are also found in peritoneum and pleural space.
- Originates from stem cell in bone marrow, but also from proliferation of B-1 cells outside the BM.
- Responds poorly to protein antigen, but strongly to carbohydrate antigens.
- Antibodies produced are of low affinity.
- No memory produced

Attribute	Conventional B cells (B-2 B cells)	B-1 B cells
Major sites	Secondary lymphoid organs	Peritoneal and pleural cavities
Source of new B cells	From precursors in bone marrow	Self-renewing (division of existing B-1 cells)
V-region diversity	Highly diverse	Restricted diversity
Somatic hypermutation	Yes	No
Requirements for T-cell help	Yes	No
Isotypes produced	High levels of IgG	High levels of IgM
Response to carbohydrate antigens	Possibly	Definitely
Response to protein antigens	Definitely	Possibly
Memory	Yes	Very little or none
Surface IgD on mature B cells	Present on naive B cells	Little or none

Figure 11-5 Kuby IMMUNOLOGY, Sixth Edition © 2007 W. H. Freeman and Company

B cells Clonal Selection

- Self-reactive B cells are eliminated in bone marrow (BM).
- BM produces 5 x 10⁷ B cells/day, but only 5 x 10⁶ B cells/day or 10% actually enter the circulation.
- Some of this loss is due to negative selection and elimination or clonal deletion of immature B cells expressing auto antibodies to self-antigens.
- "Cross-linking" of mIgM by self Ag may lead to cell death or anergy
- The clones of lymphocytes that can be interacted with corresponding Ag will be selected and lead to activation, proliferation, produce Ab and specific memory cells.

Stages of B cells Activation

- B cells development involve three main stages
- 1. B cells recognition and binding
- 2. B cells undergo Ag-induced activation, proliferation and differentiation in the periphery
- 3. Activated B cells give rise to Ab-secreting plasma cells and memory cells
- 4. Effector B cells start to function
- 5. Shut down of immune response

1. Antigen Recognition

- Naive B lymphocyte too express membrane bound antibodies IgM and IgD that function as antigen receptors (B cells receptors – BCR)
- Protein antigen only processed by APCs and recognized by helper T cells that play important role in B cells activation this is referred to as T dependent B cell activation
- Non protein antigen including lipids and polysaccharides activate B cells directly without involvement of helper T cells (T-independent activation). B cells in return can activate T helper cells

	TD Antigens	TI Antigens
Chemical nature	Proteins	Polymeric antigens, especially polysaccharides; also glycolipids, nucleic acids
Features of Response		
Primary B cell subset	Follicular B (B2) cells	MZ(/B1) B cells
Germinal center formation	Yes	No
Secondary isotypes (isotype switching)	Yes; IgG, IgE, and IgA	Little; some IgG and IgA
High affinity Ab's (affinity maturation)	Yes	No
Secondary response and memory B cells	Yes	Limited, only for some antigens
Long-lasting serum antibody titers (long-lived PCs)	Yes	No/limited

-

2. B Cell Activation and Signaling

- Antigen induce clustering (cross linking- or bring together) of membrane Ig receptors. Ig clustering occurs when antigen molecules forms aggregates, or antigen have repeated epitopes molecules
- Ig clustering induce signaling through Ig α and Ig β proteins in the B cell receptor complex

- Furthermore, microbes can activates complement system including C3 to form C3d. C3d can directly bind to B cells through CR2 and other receptors which enhance B cells activation (second signal)
- Later on signal from Ig and CR2 activates many biochemical's and enzymes that ends by formation of different transcription factors

Jonnite

Functional consequences of B-cell signaling

Activation and migration of helper T cells and B cell

Conjugate vaccine

3. Clonal Expansion, proliferation and differentiation

Antigen specific B cells expand in numbers to produce specific antibodies

B cells differentiate into

- 1. Antibody-producing plasma cells
- 2. Memory cells

4. Antibodies Production (isotype switching)

- Activated B cells start to produce different classes of antibodies in large amount to eliminate infection
- Antigen stimulated B cells may differentiate into IgM producing antibodies, however, later on, under the influence of CD40L and cyokines B cells can differentiates into cells producing other classes of heavy chain antibodies (antibody switching)
- Repeated exposure to antigen leads to increase the binding abilities of antibodies through affinity maturation, where high affinity B cells are selected to produce antibodies

Kuby IMMUNOLOGY, Sixth Edition © 2007 W. H. Freeman and Company

Affinity maturation

6. Humoral immunity shut down and formation of memory B cells

- After antibodies are capable of killing invading microorganisms, most of activated B cells die by programmed cell death
- Furthermore, circulating IgG antibodies that binds to antigen in periphery induce negative feedback mechanism to inhibit further antibody production
- Memory B cells are formed and stay for long time to facilitate faster antibodies production when the body is exposed to same antigen next time

TABLE II-6 Comparison of naive and memory B cells

Property	Naive B cell	Memory B cell	
Membrane markers Immunoglobulin Complement receptor	lgM, lgD Low	lgM, lgD(?), lgG, lgA, lgE High	
Anatomic location	Spleen	Bone marrow, lymph node, spleen	
Life span	Short-lived	May be long-lived	
Recirculation	Yes	Yes	
Receptor affinity	Lower average affinity	Higher average affinity due to affinity maturation st	
Adhesion molecules	Low ICAM-1	High ICAM-1	
*Affinity maturation results from somatic mutation during proliferation of centroblasts and subsequent antigen selection of cen- trocytes bearing high-affinity mlg.			

Table 11-6 *Kuby IMMUNOLOGY, Sixth Edition* © 2007 W. H. Freeman and Company

Primary and secondary humoral immunity

A

Primary Secondary antibody response antibody response First Repeat infection infection laG Plasma cells Plasma cells in peripheral lymphoid tissues Low-level Amount of antibody Activated antibody B cells production Plasma cells in bone marrow Memory B cell Plasma cells Memory in bone marrow B cell Naive B cell 5 10 >30 0 5 10 >30 Days after first antigen exposure - Days after second antigen exposure **B**) Primary response Secondary response Lag after Usually 5-10 days Usually 1-3 days immunization Peak Smaller Larger response Antibody Usually IgM>IgG Relative increase in IgG and, under certain situations, in IgA or IgE isotype (heavy-chain isotype switching) Antibody Lower average affinity, Higher average affinity more variable (affinity maturation) affinity

5. Effector Mechanisms

- Neutralization
- Opsonization
- Complement activation
- Antibody dependent cell mediated toxicity (ADCC)
- Transcytosis- movement across epithelial cells

Nature Reviews | Microbiology