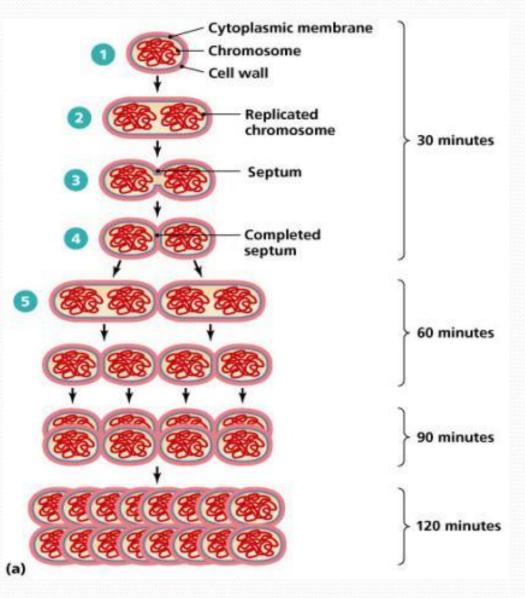
Bacterial Growth and Nutrition

Faculty of Medicine Hashemite University Dr Mohammad Al-Tamimi, MD, PhD


Objectives

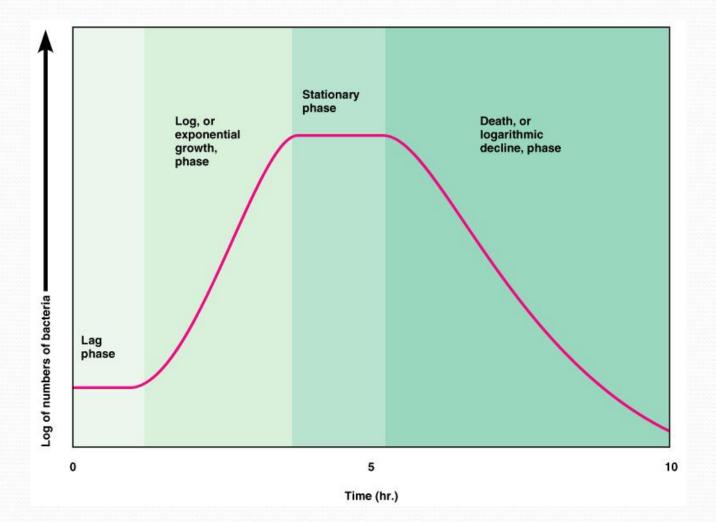
- Growth definition and classification
- Population growth growth curve
- Population growth Methods
- Physical parameters that affect growth
- Chemical parameters that affect growth
- Bacterial growth measurement

Introduction

- Growth: Orderly increase in the sum of all the components of an organism, which reflects increase in number of cells
- Importance of understanding bacterial growth: Bacterial survival and transmission In vitro diagnostic (laboratory culture) Cessation of bacterial growth for treatment

Microbial growth/Binary Fission

Rapid Growth of Bacteria


Arithmetic Numbers of Cells	Numbers Expressed as a Power of 2	Visual Representation of Numbers
1 2 4 8 16 32	2 ⁰ 2 ¹ 2 ² 2 ³ 2 ⁴ 2 ⁵	• •

Generation time under optimal conditions

Generation time is the time it takes for a single cell to grow and divide

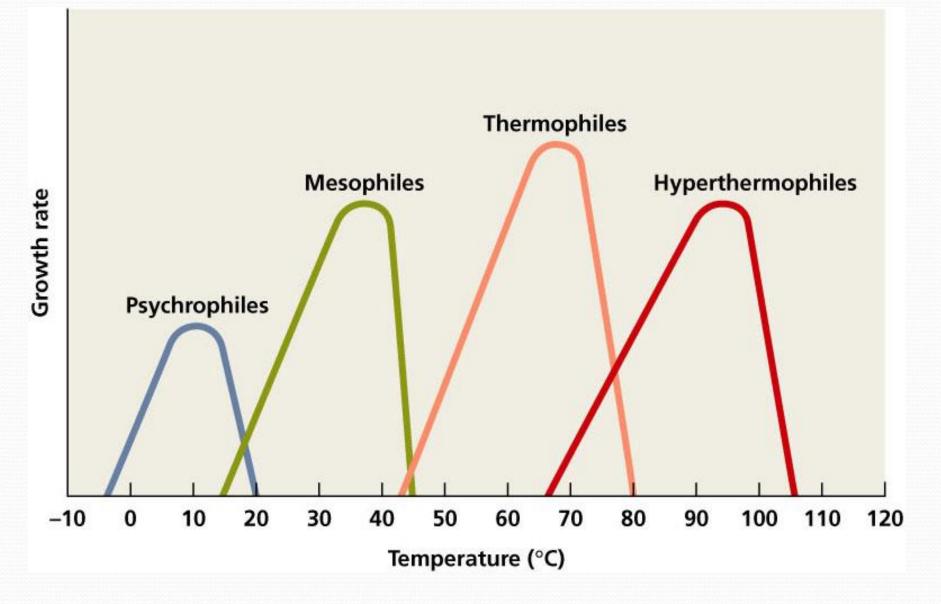
OrganismGeneration TimeEscherichia coli12.5 minStaphylococcus aureus27-30 minMycobacterium tuberculosis (agent of Tuberculosis)18 – 24 hrsTreponema pallidum (agent of Syphilis)30 hrs

The Growth Curve

- During lag phase, cells are recovering from a period of no growth and are making macromolecules in preparation for growth
- During log phase cultures are growing maximally
- Stationary phase occurs when nutrients are depleted and wastes accumulate (Growth rate = death rate)
- During death phase death rate is greater than growth rate

Factors Affecting Bacterial Growth

Temperature


- pH
- Osmotic pressure
- Oxygen
- Nutrition

Temperature

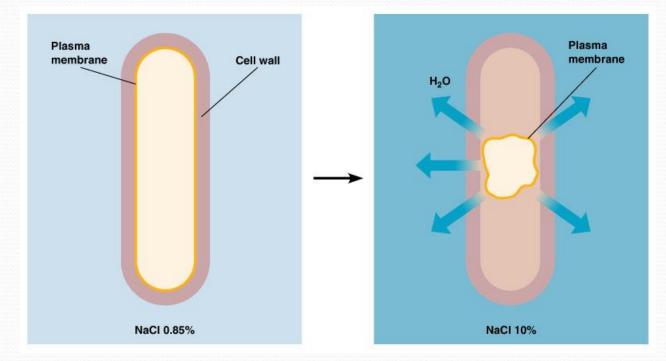
- Hydrogen bonds will break at high temperatures leads to protein denaturation
- Lipids will be more liquid
- Outside membrane cannot preserve the integrity of the cell and it will disintegrate

- Minimum Temperature: Temperature below which growth ceases, or lowest temperature at which microbes will grow
- Optimum Temperature: Temperature at which its growth rate is the fastest
- Maximum Temperature: Temperature above which growth ceases, or highest temperature at which microbes will grow

Classification of Microorganisms by Temperature

Temperature Classes of Organisms

- Psychrophiles (o-20°C)
 - Cold temperature optima
 - Most extreme representatives inhabit permanently cold environments
- Mesophiles (20 45°C)
 - Midrange temperature optima
 - Found in warm-blooded animals and in aquatic environments in temperate and tropical latitudes
- Thermophiles (50- 80°C)
 - Growth temperature optima between 50°C and 80°C
- Hyperthermophiles
 - Optima greater than 80°C
 - These organisms inhabit hot environments including boiling hot springs


pH and Microbial Growth

• Each organism has a pH range and a pH optimum

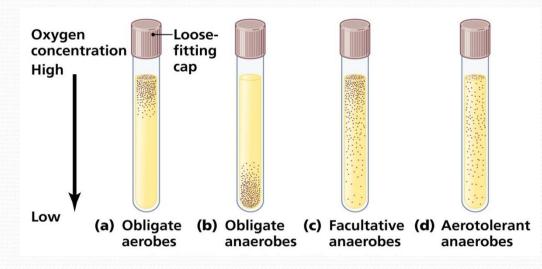
- Acidophiles: Grow optimally between ~pH o and 5.5
- Neutrophiles: Growoptimally between pH 5.5 and 8
- Alkalophiles: Grow optimally between pH 8 11.5
- Most bacteria grow between pH 6.5 and 7.5 Molds and yeasts grow between pH 5 and 6

Human blood and tissues has pH 7.2±0.2

Osmotic Effects on Microbial Growth

- Osmotic pressure depends on the surrounding solute concentration and water availability
- Hypertonic environments, increase salt or sugar, cause plasmolysis

Classification


- Osmophiles: organisms which thrive in high solute
- Osmotolerant: organisms which tolerate high solute

Oxygen and Microbial Growth

Using oxygen (O_2) in metabolism creates toxic waste Microbes that are able to use aerobic respiration produce enzymes to detoxify oxygen:

Catalase: $H_2O_2 \dashrightarrow H_2O$ and O_2 **Superoxide dismutase** (SOD): oxygen radical $\dashrightarrow H_2O$ and O_2

Microbes that don't make these enzymes cannot exist in the presence of oxygen.

Classification of Organisms Based on O₂ Utilization

- Aerobes :
 - **Obligate**: require oxygen to grow
 - Facultative: can live with or without oxygen but grow better with oxygen
 - Microaerphiles: require reduced level of oxygen
- Anaerobes :
 - Obligate: do not require oxygen. Obligate anaerobes are killed by oxygen
 - Aerotolerant anaerobes: can tolerate oxygen but grow better without oxygen.

Microbial Nutrition

- Organisms use a variety of **nutrients** for:
 - their energy needs
 - to build organic molecules & cellular structures
- Energy Source
 - Phototroph: Uses light as an energy source
 - Chemotroph: Uses energy from the oxidation of reduced chemical compounds

Required nutrients:

- Macronutrients
- Micronutrients
- Special requirements

Macronutrients

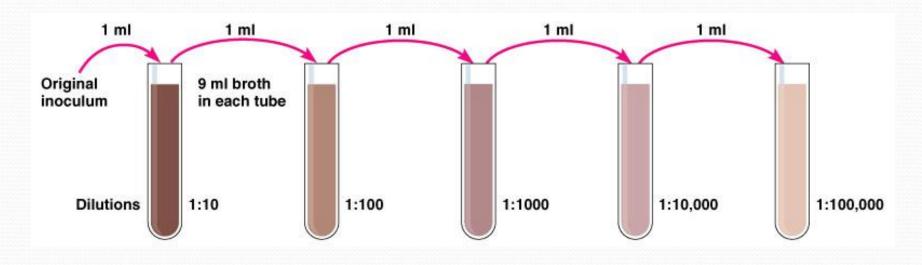
Elements required in fairly large amounts:

- Carbon
- Nitrogen
- Sulfur
- Phosphorus

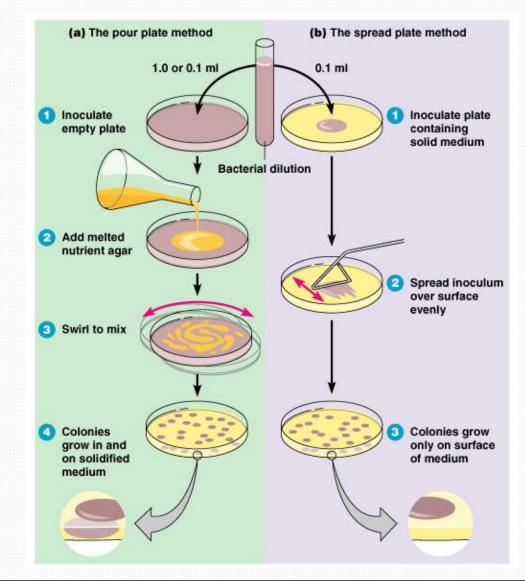
Micronutrients

Metals and organic compounds needed in very small amounts, usually as enzyme and cofactors: Calcium, Copper, Iron, Magnesium, Manganese, and Iron

Special requirements


- Amino acids
- Nucleotide bases
- Enzymatic cofactors or "vitamins"

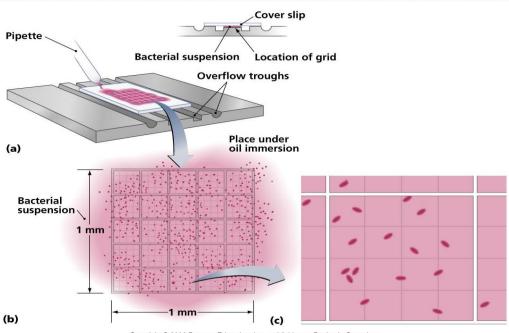
Methods Used to Measure Microbial Growth


- Count colonies on plate or filter (counts live cells)
- Microscopic counts
- Mass determination
- Turbitity
- Measurement of enzymatic activity or other cell components

Viable Count

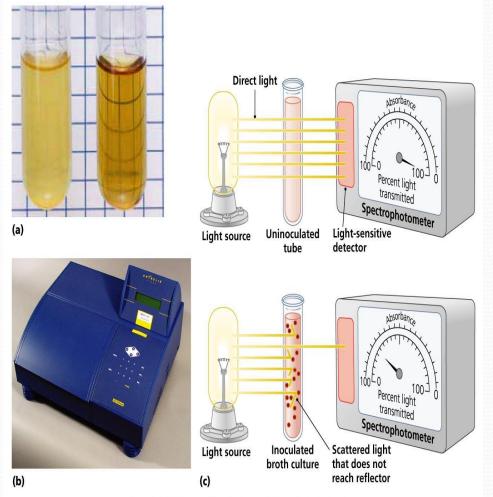
1. Perform serial dilution of original sample (1:10 dilution)

2. Incubate plates with samples from each serial dilution



3. Count plates that have 25-250 colonies and correct The dilution factor

Calculation: Number of colonies on plate \times reciprocal of dilution of sample = number of bacteria/ml (For example, if 32 colonies are on a plate of ¹/10,000 dilution, then the count is 32 \times 10,000 = 320,000/ml in sample.)


Microscopic counts

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings.

- Need a microscope, special slides, high power objective lens
- Typically only counting total microbe numbers, but differential counts can also be done

Turbidity

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings.

- Cells act like large particles that scatter visible light
- A spectrophotometer sends a beam of visible light through a culture and measures how much light is scattered
- Scales read in either absorbance or % transmission
- Measures both live and dead cells

Mass Determination

- Cells are removed from a broth culture by centrifugation and weighed to determine the "wet mass."
- The cells can be dried out and weighed to determine the "dry mass"

Thank you...