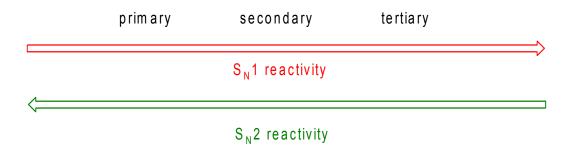
VEIN BATCH 2027

TIM AND

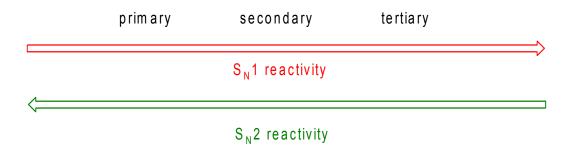
A FAU

ID


and Elimination Reactions

Done by : Johainah Taha Abed-Al-Rahman Abu Dalleh Sadeen Al-Zoubi

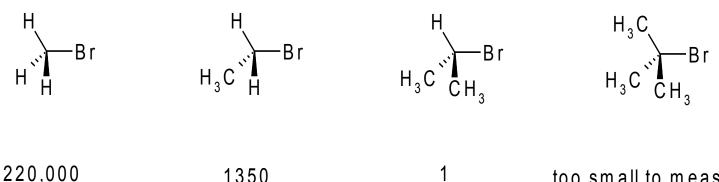
ملاحظة : تم إعادة ترتيب بعض السلايدات بناءً على شرح دكتور إياد بالتوفيق يارب **اللا^{ال}**


S_N1 vs. S_N2: Nature of Substrate

The substrate itself has an effect on the mechanism. $S_N 1$ requires an intermediate carbocation, while $S_N 2$ requires a backside attack of the nucleophile (steric effects), i.e.

S_N1 vs. S_N2: Nature of Substrate

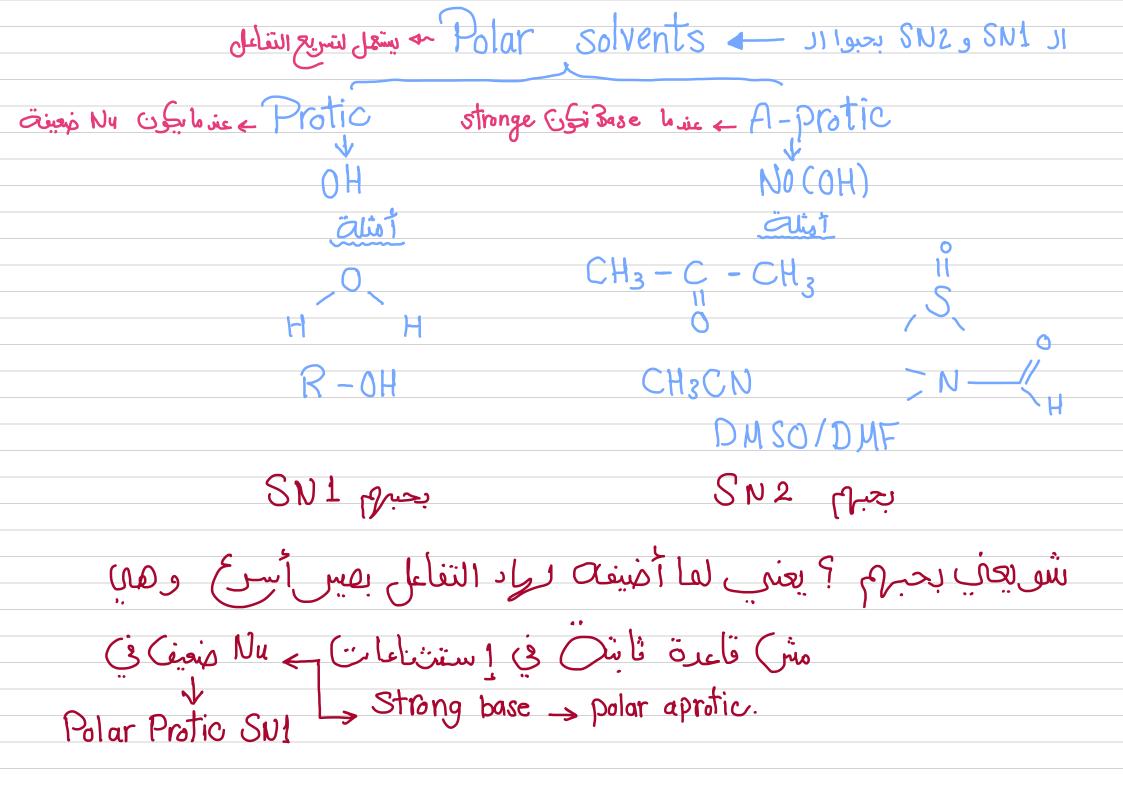
The substrate itself has an effect on the mechanism. $S_N 1$ requires an intermediate carbocation, while $S_N 2$ requires a backside attack of the nucleophile (steric effects), i.e.



$S_N 1 vs. S_N 2$: Nature of Substrate

Reactivity of Alkyl bromide to S_N1 mechanism:

43 100,000,000 Reactivity of Alkyl bromide to $S_N 2$ mechanism:



1350

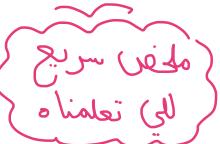
Record M S_N1 vs. S_N2: Solvent Effects

The solvent can effect the rate of formation and stability of charged species. In general two types of solvents are used:

- Polar protic solvents: a solvent that contains an -OH group, they are good for dissolving anions and cations. This increases the rate of S_N1 but decreases S_N2 by solvating the Nu. (water, alcohols, acids)
- Polar aprotic solvents: only solvate cations well therefore good for SN2 as the Nu is very reactive in these conditions. (acetone, DMSO, DMF, acetonitrile)

$S_N 1 vs. S_N 2$: Solvent Effects

Effects of polar protic/aprotic solvent polarity on S_№2 mechanism


			les per
	Protic /aprotic Solvent	Relative Rate	الأرقاح موقعه
Protic AProtic	CH ₃ OH	1	
	CH ₃ OH H ₂ O	7	
	(CH ₃) ₂ SO (DMSO)	1,300	
AProtic	(CH ₃) ₂ NCHO (DMF)	2,800	
	CH ₃ C≡N	5,000	
	d im e thyl sulfoxid e	N H Aprotic d im e thy Iform a m id	N≡C− Aprø acetoni

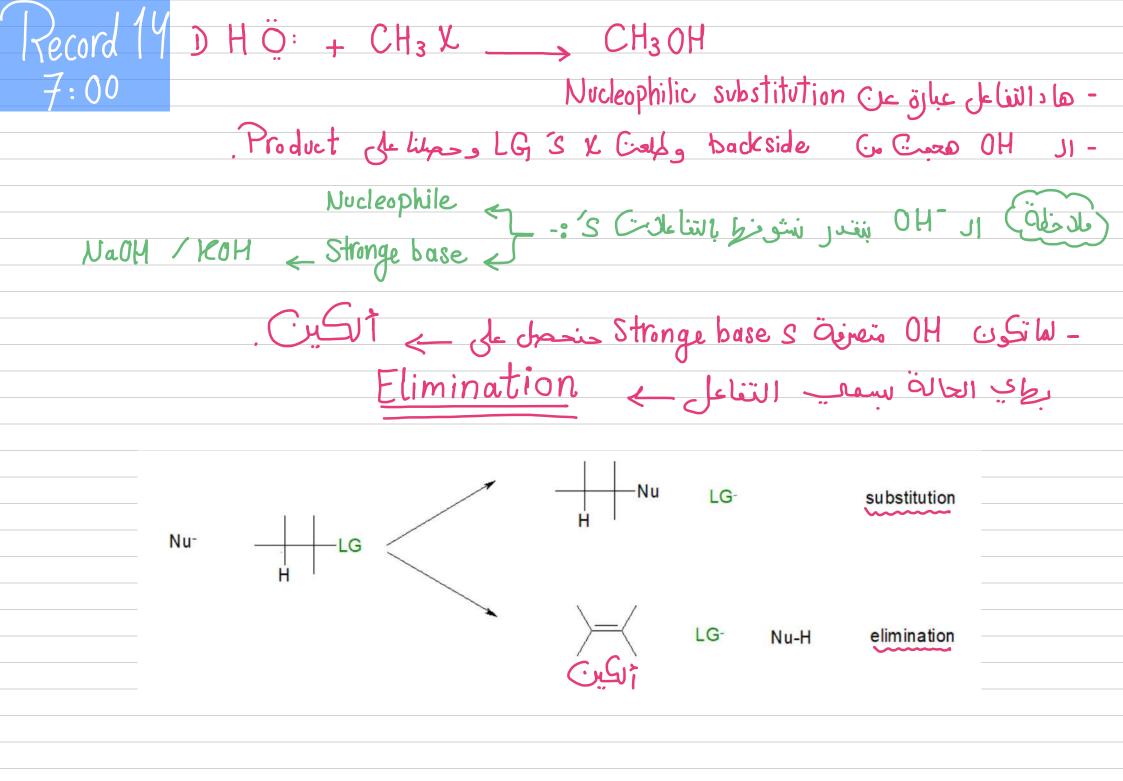
 $N \equiv C - C H_3$ Aprotic a c e to n itrile

S_N1 vs. S_N2: Summary

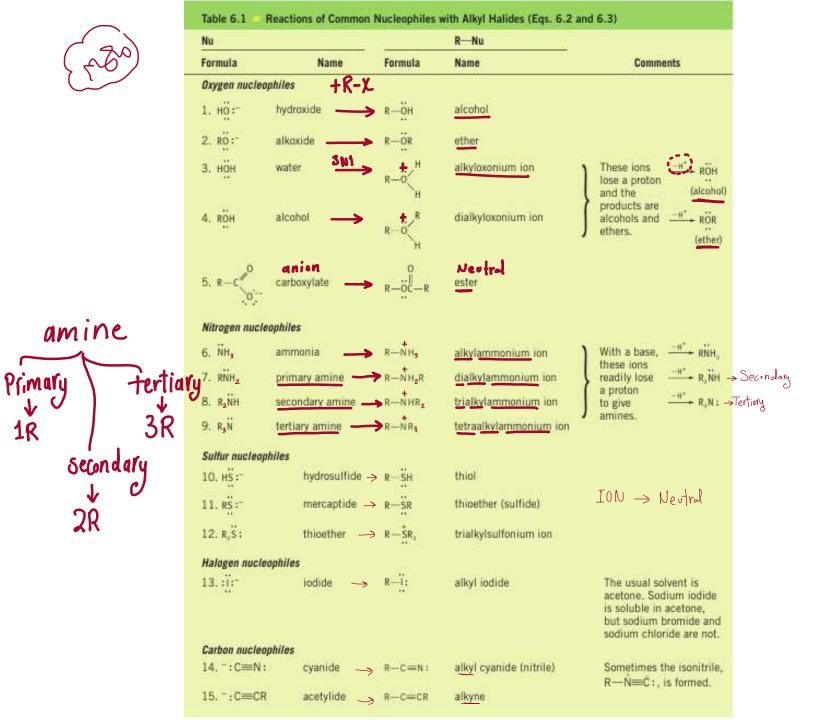
Summary of S_N1 & S_N2 reactions:

Variable	S _N 1	S _N 2
Halide: 1° Primary	NO	YES
2° Secondary	Yes	Yes
2° Secondary 3° tertiary	YES	NO
Stereochemistry	Racemization	Inversion
nucleophile	Neutral ok as rate doesn't depend on [Nu]	Best when anionic
Solvent	Polar protic	Polar aprotic best, Polar protic slow

S_N1 vs. S_N2: Nucleophile

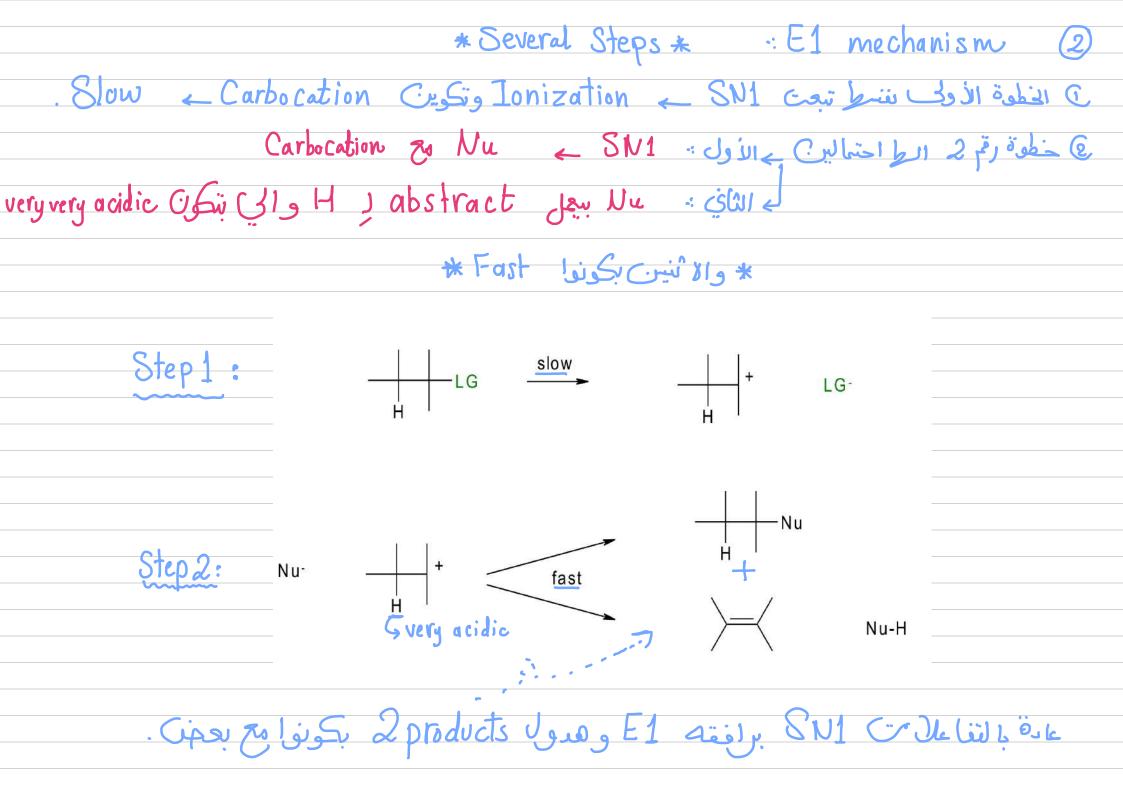

- Anions are stronger nucleophiles than neutral molecules, i.e. HO⁻ vs. H₂O (but more basic).
- 2) Nucleophilic strength increases down a column in the Periodic Table (polarizability).
- Across a row in the periodic table nucleophilicity (lone pair donation) C⁻ > N⁻ > O⁻ > F⁻ since increasing electronegativity decreases the lone pair availability.

$S_N 1 vs. S_N 2: Summary$


كه شرحياه

Summary of $S_N 1 \& S_N 2$ reactions:

- -1° react S_N2! Can't make stable carbocation
- 3 $^{\circ}$ react $S_{\rm N}1!$ Too sterically crowded for $S_{\rm N}2$
- 2° reacts either S_N1 or S_N2, this is the one you have to use nucleophilic strength and solvent conditions to control the mechanism if needed.

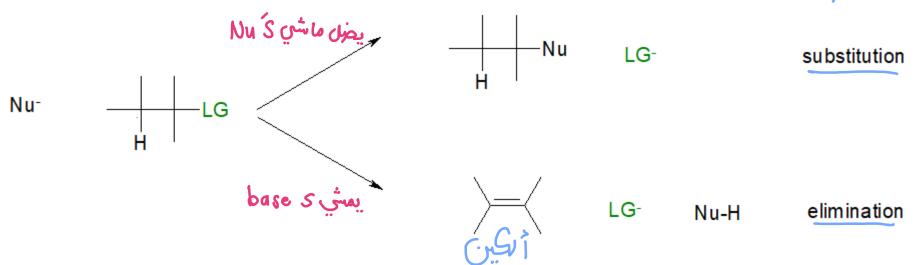

Record 14 $+ CH_3 \chi \longrightarrow CH_3 OH$ 10:30 Nu anion حيح التناعل Ione pair ZOH **Z-X** (+) on oxygen very a cidic H+ وسکل يفعند Neutral عصل مباشرة على Neutral Anion 1. sie Imitel يغقد 4 Neutral Neutral Charged un - ~ 2. اذا استخدمت حتل قول أمثلة ليثرة بالمبرك \rightarrow

الفكرة من الحدوك هي :-- Nucleophile موشرط يكون عليما (-) - ال electron density حولما عالمي - فلو كمان عليما المصافي المسكل الطبيعي بحبث ال Product الأول حيكون Protonated حتشتخل بالمشكل الطبيعي بحبث ال Product الأول فلو عندها H حتفقد هاي ال H وبعدها حنحصل على H العنام . Neutral product

CH₃CH₂O Kecord 14 25:00 CH₃CH₂OH Br 20% 60% 20% 2° halide allyle (H) * Le re l'éle bond d'il pére l'éle bond C - H H -ب 1 أد 2 ، طب مين نختار ؟ صذاما جا وبنا عليات عمو زن سيف بـ (Zaitsev Yule) ، (سمه متعوب عليه) * عمو زیت سیف حکالنا ان C=C الی حولہ R الشياد بكأ لأنط بتكون أكثر إستقر $C = C \begin{bmatrix} R & H \\ R & R \end{bmatrix} = C \begin{bmatrix} R & R & R \\ R & R \end{bmatrix} = C \begin{bmatrix} R & R$ Tri substituted Tetra substituted Cis-di Trans-di mono Substituted substituted alkyle substituted alkyle alkyle alleyle Alkyle

-0 CH3CH2O-CH₃CH₂OH Br 20% 60% 20% R H $H_{c=C}$ H = C = C = RC=c < H Н Trans-di Mono Cis-di 11 الدكتررمون نبعنا عكناجي aic Gine - is more stable Major سؤال معادلة ويسألك أك خیار مو ال ۲۰ Hajor بوالمائة لازم ندور على الأعلى استترابل

Elimination Reactions


A problem arises in nucleophilic substitution reactions in that nucleophiles are also bases. This is especially true for anionic nucleophiles, i.e.

$$Nu:^{-} + H^{+} \rightarrow Nu:H(Nu-H)$$

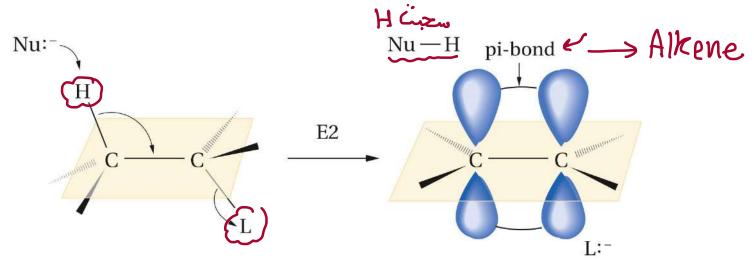
This can occur by the Nu abstracting a proton (i.e. acting as a base) from the substrate giving an elimination reaction.

Dehydrohalogenation Reactions

A dehydrohalogenation is an elimination reaction of alkyl halides. It will compete with a substitution to some degree, i.e.

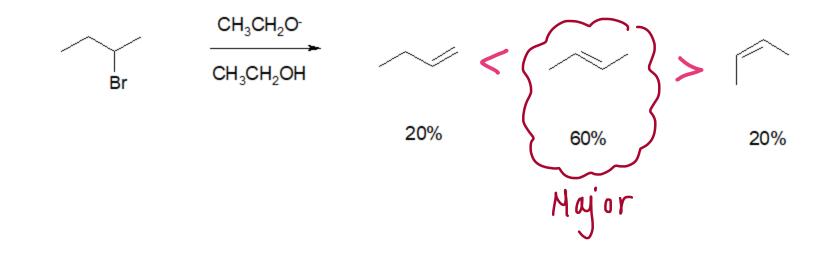
It is used to produce alkenes from alkyl halides

E Mechanisms


Like substitution there are several possible mechanisms for elimination reactions. We will examine two of them: E1 and E2

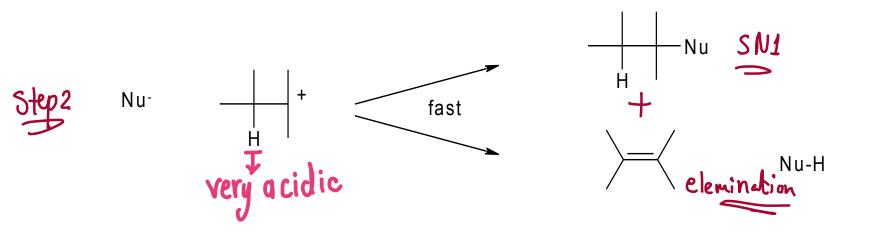
E2 Mechanism

- SN2 مثل 2N2
 Rate = k[alkyl halide][base] (bimolecular)
- Stereochemical requirement: anti-periplanar arrangement of the H atom and LG is required


- This results from an orbital interaction that allows the π bond to form.

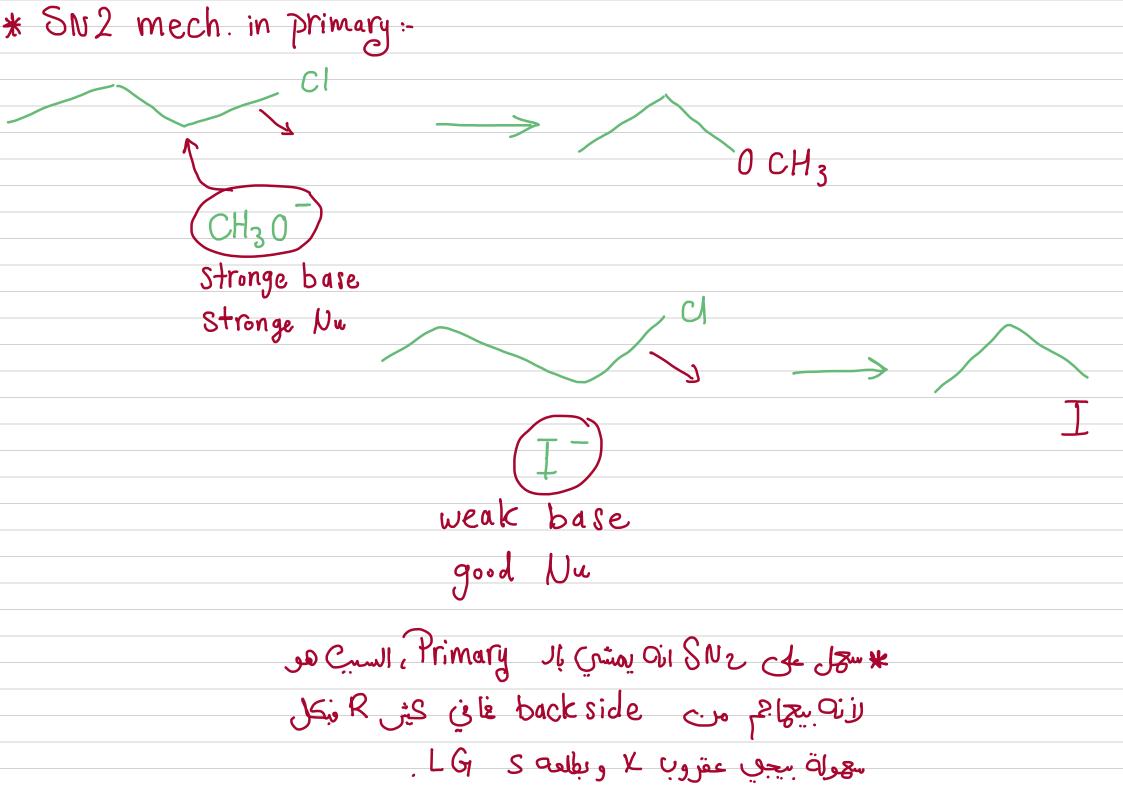
E2 Mechanism

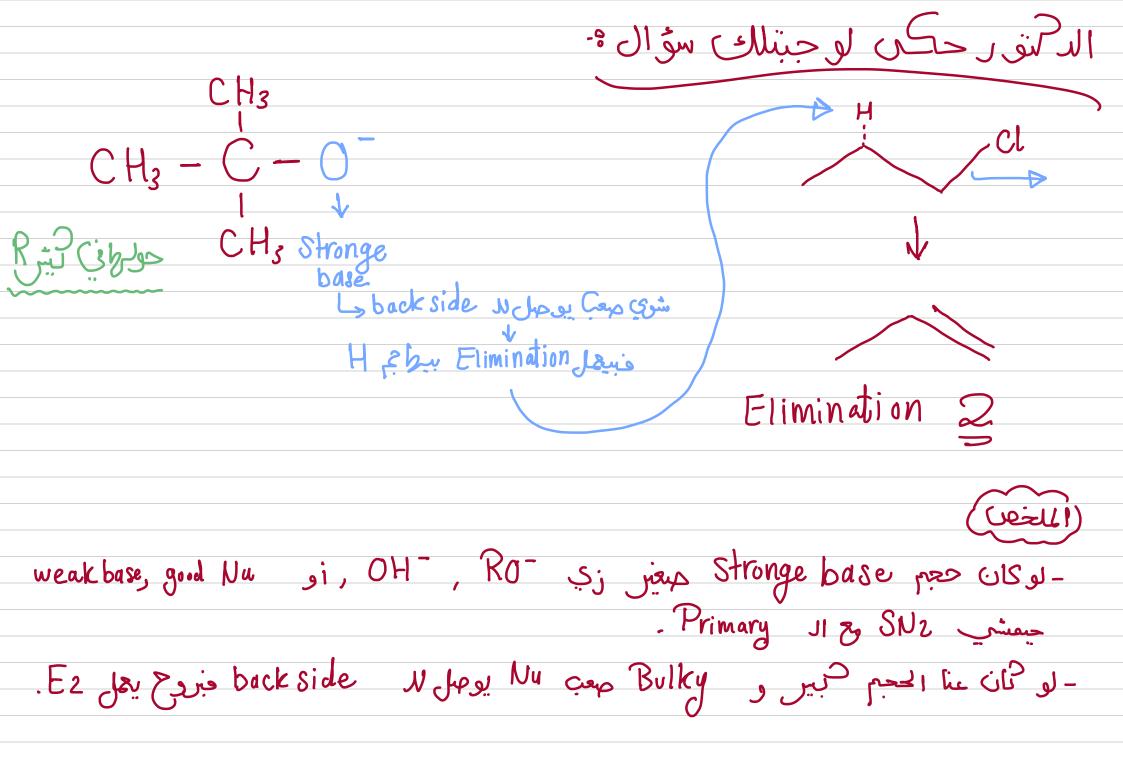
Regioselectivity: where does the double bond form: *Zaitsev's rule*: most highly substituted alkene (watch for sterically hindered bases) Stereoisomers:(trans > cis



SN1 (2) K E1 Mechanism

Rate = k[alkyl halide] (unimolecular)

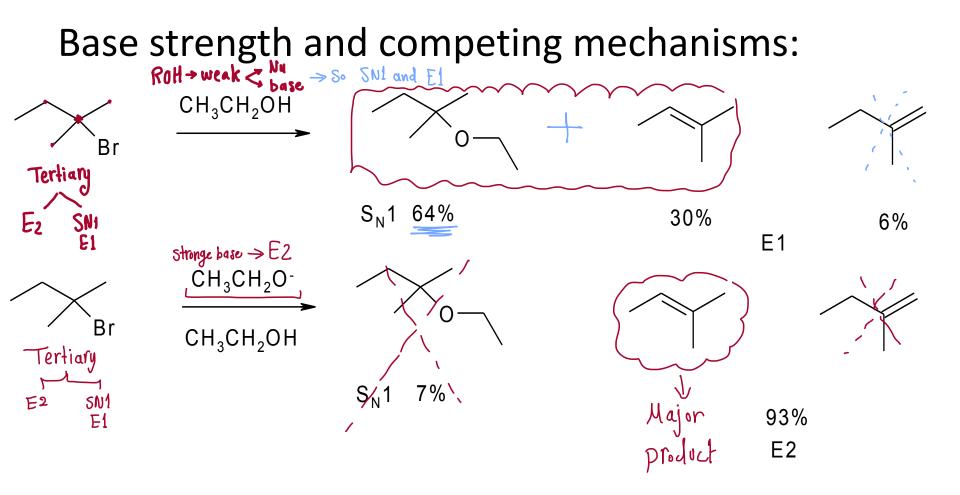




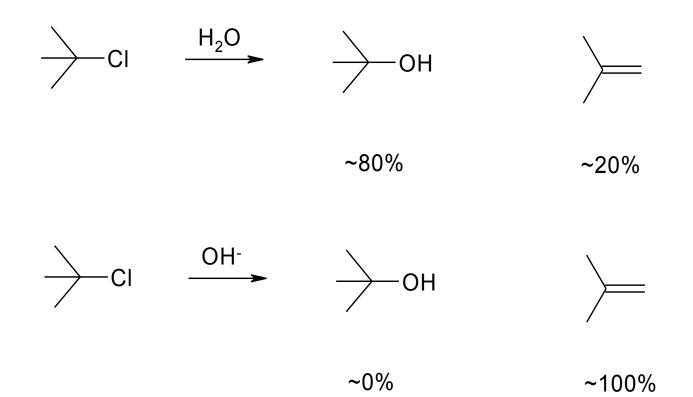
Summary of S_N versus E for (هادابجدول مقسم حسب Haloalkanes (مادابجدول مقسم حسب) هاد الحبول مهم حساعدنا على على الأسلات - For Methyl and Primary Haloalkanes SN1 chains TABLE 7.7 Summary of Substitution versus Elimination Reactions of Haloalkanes Reaction Halide Comments S_N2 Methyl -The only substitution reactions observed. CH₃X SNT S_N1 reactions of methyl halides are never observed. The methyl cation is so unstable that it is never formed in solution. S_N2 Primary The main reaction with strong bases such as OH⁻ and EtO⁻. Also, the RCH₂X main reaction with good nucleophiles/weak bases, such as I⁻ and CH3COO-. RS-, HS- → SN2 vonte E2 The main reaction with strong, bulky bases, such as potassium tertbutoxide.

 S_N1/ET Primary cations are never formed in solution; therefore, S_N1 and E1 reactions of primary halides are never observed.

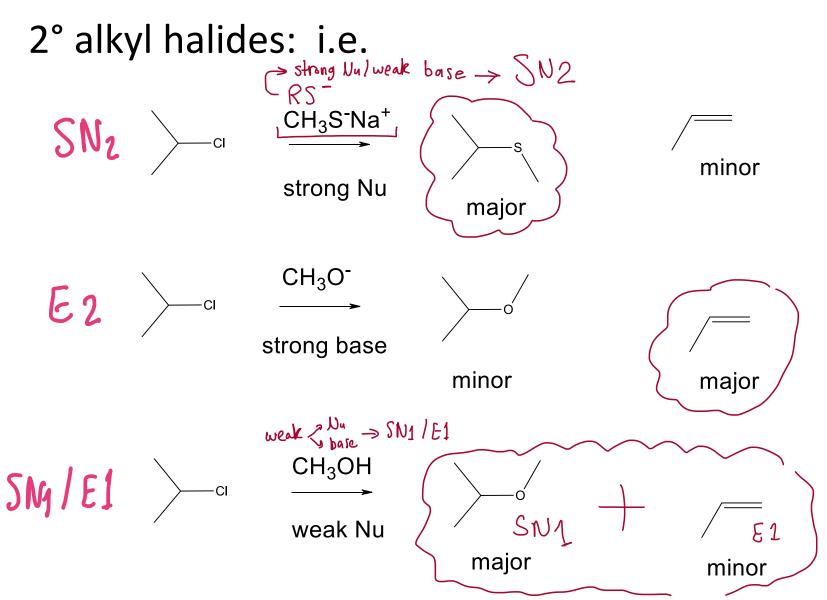
Copyright © John Wiley & Sons, Inc. All rights reserved.



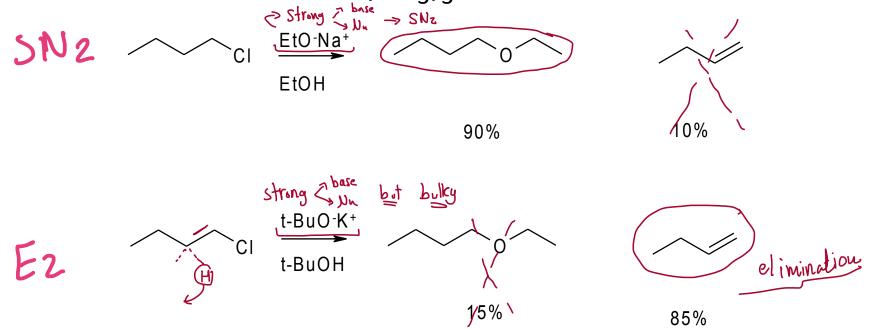
Summary of S_N versus E for Haloalkanes – For Secondary and Tertiary Haloalkanes


TABLE 7.7 Summary of Substitution versus Elimination Reactions of Haloalkanes				
Halide	Reaction	Comments		
Secondary R₂CHX	S _N 2	The main reaction with weak bases/good nucleophiles) such as I [−] and CH ₃ COO [−] .		
JGI 2º	E2	CH ₃ COO ⁻ . The main reaction with strong bases/good nucleophiles, such as OH ⁻ and CH ₃ CH ₂ O ⁻ .		
	S _N 1/E1	Common in reactions with weak nucleophiles in polar protic solvents, such as water, methanol, and ethanol.		
Tertiary R₃CX	_S _N 2	S _N 2 reactions of tertiary halides are never observed because of the extreme crowding around the 3° carbon.		
	E2	Main reaction with strong bases such as HO ⁻ and RO ⁻ .		
	S _N 1/E1	Main reactions with poor nucleophiles/weak bases) H20, R0H		

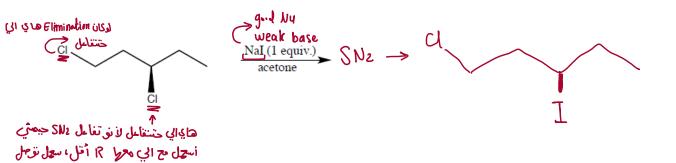
Copyright © John Wiley & Sons, Inc. All rights reserved.

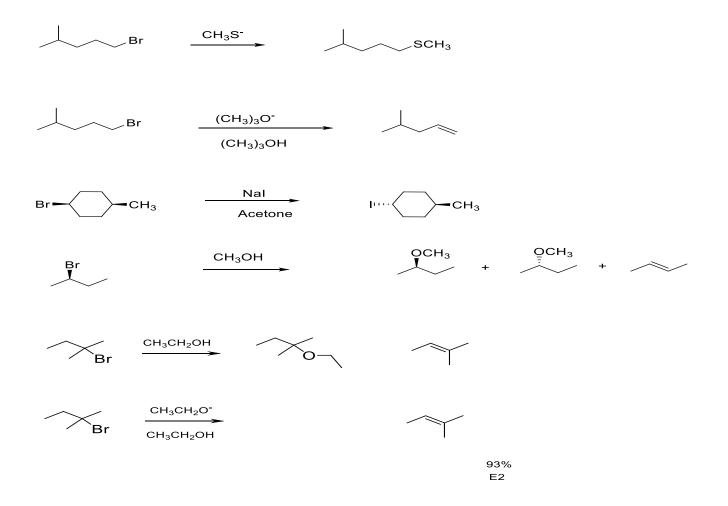

E1 Mechanism

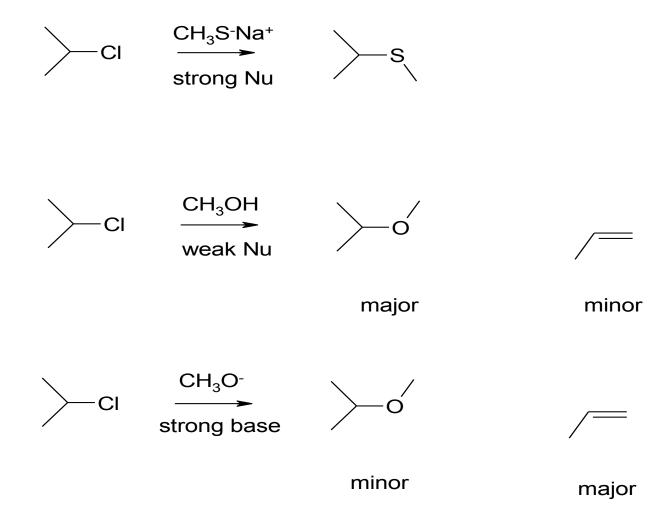
- 3° alkyl halides: only $S_N 1$ but either (E1 or E2)
 - Weak Nu and polar solvent: $S_N 1$ and E1 compete



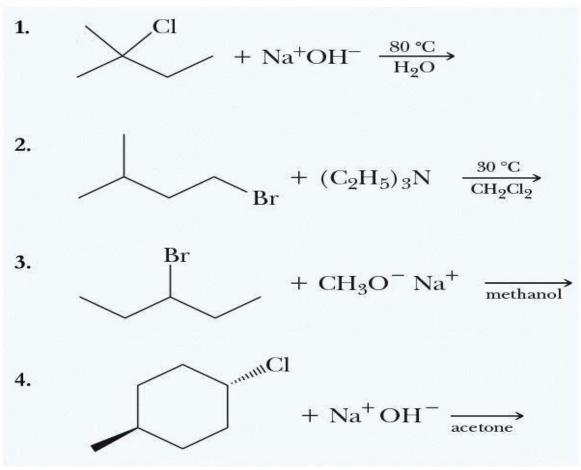

- 2° alkyl halides: $S_N 1$, $S_N 2$, E1 or E2 are all possible.
 - Weak Nu
 substitution
 - − Strong base → elimination
 - Can use solvent to control $S_N 1$ vs. $S_N 2$


1° alkyl halides:


- Only S_N2 and E2 are possible (no carbocations)
- Substitution dominates unless you use a sterically hindered base like (CH₃)₃CO⁻K⁺



ایل رسیورد ۱۹ 55:0°)



Summary of S_N versus E for Haloalkanes

–Examples: Predict the major product and the mechanism for each reaction.

Copyright © John Wiley & Sons, Inc. All rights reserved.

هناك أناس يتفننون في جعل المكن مستحيلا ، بينما آخرون : يبتكرون ليجعلوا من المستحيل ممكنا. لا تكترثوا بالصنف الأول و كونوا كالصنف الثاني

#MEDICAL_CLUB