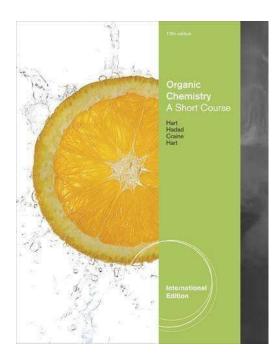
VEIN BATCH 2027

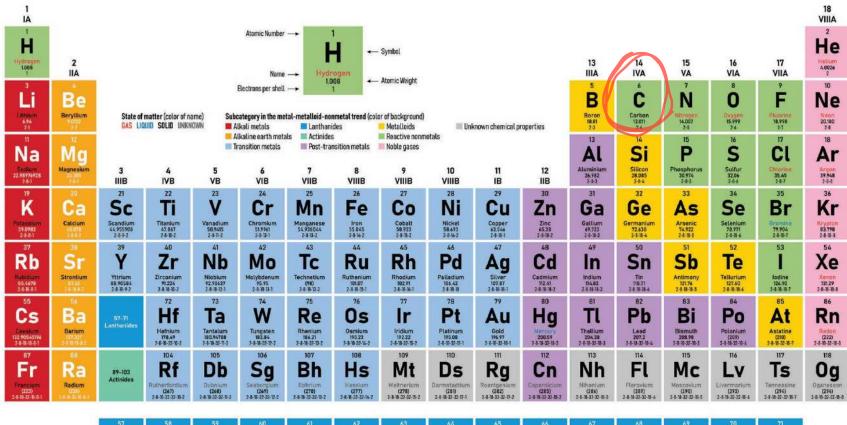
MARIN

Sub:	Organic	المادة:
Lecture:	1	المحاضرة:
By: Jo	hainah Tah	إعداد: a
Edited:		تعديل:


Chem 237 Basics of Organic Medicinal Chemistry

Course description

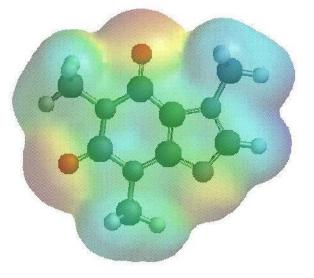
This is the first year organic chemistry course, introducing basic concepts and principles of organic chemistry (chapters 1 - 11).


Texts

Hart, Craine, Hart and Hadad, Organic Chemistry, A Short Course,13th Edition (Brooks/Cole, Cengage Learning, CA 94002-3098 USA, 2012).

Dr. Eyad Younes

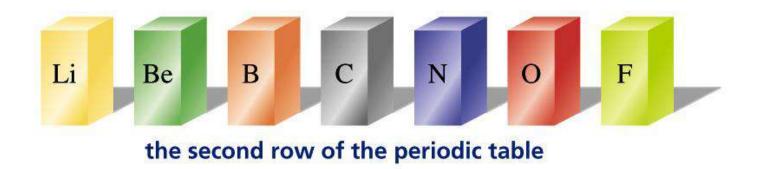
Periodic Table of the Elements



La	Ce	Praseodymium	Nd	Promothium	Sm Samarium	Eu	Gd Gadolinium	Tb	Dysprosium	Ho Holmiun	Er		Ytterbium 17305	Lu
2-4-808-9-2 89	2.4.E-17-7-2 90	7-8-19-71-8-2 01	2-6-5-22-6-2	2-4-18-72-9-2 93	7-8-0-8-4-2	2-6-5-6-2	2-8-10-25-7-2	2-8-16-27-6-2	2-0-11-25-0-2	2-5-8-77-6-2	2-0-11-03-0-2	2-0-10-27-8-2	2-0-12-0-2	7-9-30-32-9-2
Ac	Th	Pa	Ű	Np	Pu	Am	Cm	Bk	Čf	Ës	Fm	Md	No	Lr

Chapter 1: Bonding and Isomerism

Compounds with the same formula but different arrangement of atoms.



Done by : Johainah Taha

© R. Spinney 2013

Organic Chemistry

Organic compounds are compounds containing carbon

- Atoms to the left of carbon give up electrons.
- Atoms to the right of carbon accept electrons.

• Carbon shares electrons پ وہای الخاصیت بتخلیہ یکونے عدد جیرمن اعرکبات

Dr. Eyad Younes

Bonding and Isomerism

1.1 How Electrons Are Arranged in Atoms

- An atom is: the *smallest particle* of an element that retains all of the chemical properties of that element.
- •An atom consists of negatively charged electrons, positively charged protons, and neutral neutrons

• Mass number: the sum of the protons and neutrons of an atom. = $P^+ + N^\pm$ (Protons and neutrons are ~1837 times the mass of an e⁻)

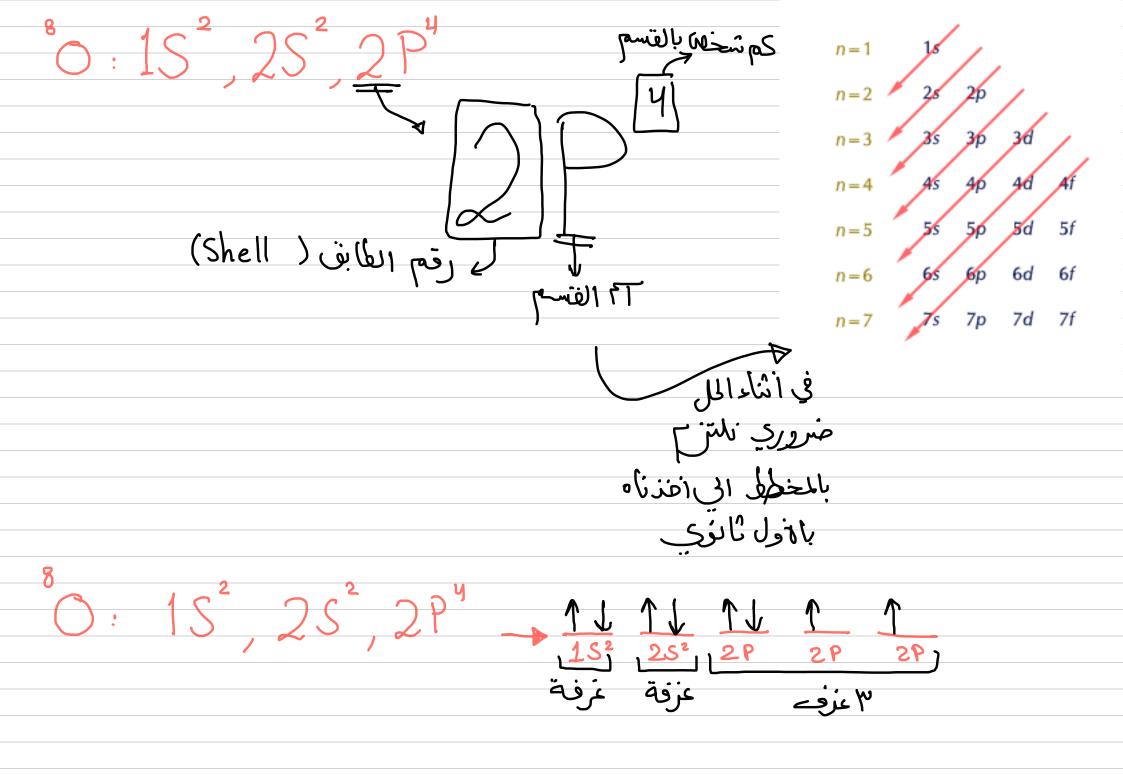
• Isotopes have the same atomic number but different mass numbers (¹²C and ¹³C)

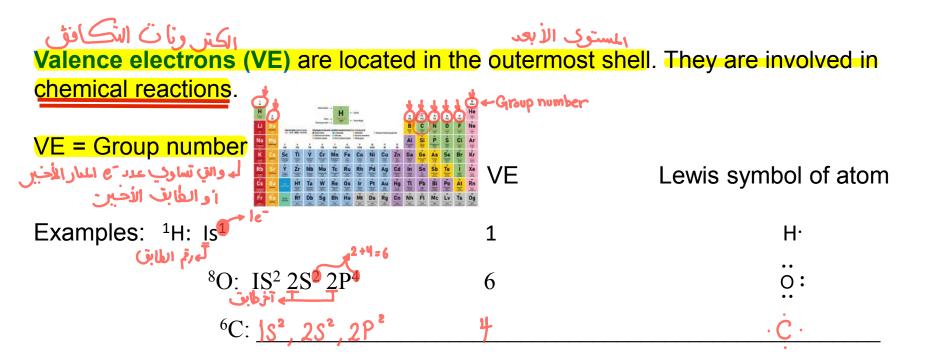
- Electrons are located in atomic orbitals (S, P, d, f).
 د مرتبة بال دااءى.
- Orbitals tell us the energy of the electron and the volume of space around the nucleus where an electron is most likely to be found.
- Orbitals are grouped in shells .

نت Each orbital can hold a maximum of 2e⁻ and the two electrons have opposite spin

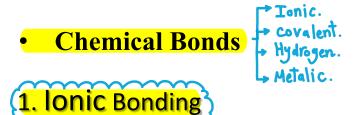
Table 1.1 Distribution of Electrons in the First Four Shells That Surround the Nucleus						
السلايد الي بعده عليه شرج	First shell	Second shell	Third shell	Fourth shell		
Atomic orbitals	S	<i>s</i> , <i>p</i>	s, p, d	s, p, d, f		
Number of atomic orbitals	1	1, 3	1, 3, 5	1, 3, 5, 7		
Maximum number of electrons	2	8	18	32		

Example :

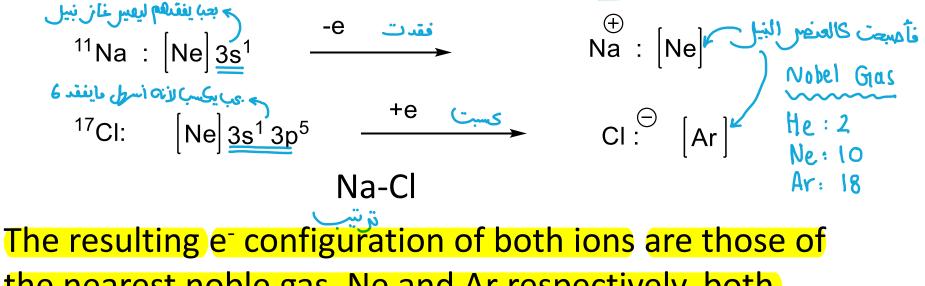

¹H: 15


Note کل ما کان المستوی (shell) أقرب الی النواۃ کل ما کان: ۱. High stablity ۲. Low energy

أشرع الكم بلغة أبسط ٥- (تخيلوا معمي) اled حم خلینا نعتبی انه اد العاد هر طابق ویل طابق فیه اقسام المستوبات الى حول النواق ب اسمعم وكل قسم فيح عدد من العزف وكل غرفة بتوسع شخصين) ، بشرط يكونول عكس بعفا).


 هساكل قسم اله عدد من الفرق، مثلاً:
 الد S م فيه غرفة وحدة. بناءً على هاد الكلم، الطابف الأول فيه قسم واحد الي هو كوال ك يعني عزفة وردة بتوسح شخصين، اذاً المستوى الأول بيوسح عجر. ال P م فيه ۲ عزف. الطابق الثاني حيدة تسعين كرع ، حسم كعيه غرضة ، وقسم اله م فيه ٥ عزف. P فیہ ۳ حزف و کل عزمنة بنوسع شحفِس اذا طابق 2 بیوسع ال f م في ٧ عزف. 8e^{-L}

طابف = Shell (lalal) Atomic orbital = paméi paus (S, P, d, F) عدد العزف ركل قسم = Number of atomic orbital



Group	1	11	Ш	IV	v	VI	VII	VIII
uroup				IV.			VII	VIII
	H۰							He:
	Li•	Be•	• B •	٠c٠	N:	• 0 :	:F:	•Ne
	Na・	•	•	ċ		• S :	: cl :	: Ar :

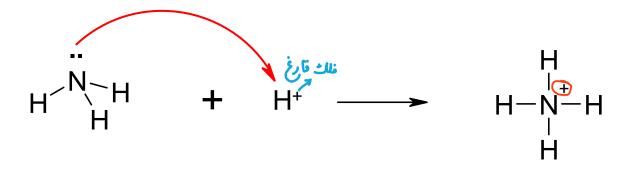
An ionic bond is an electrostatic attraction between positive & negative ions resulting from e⁻ transfer.

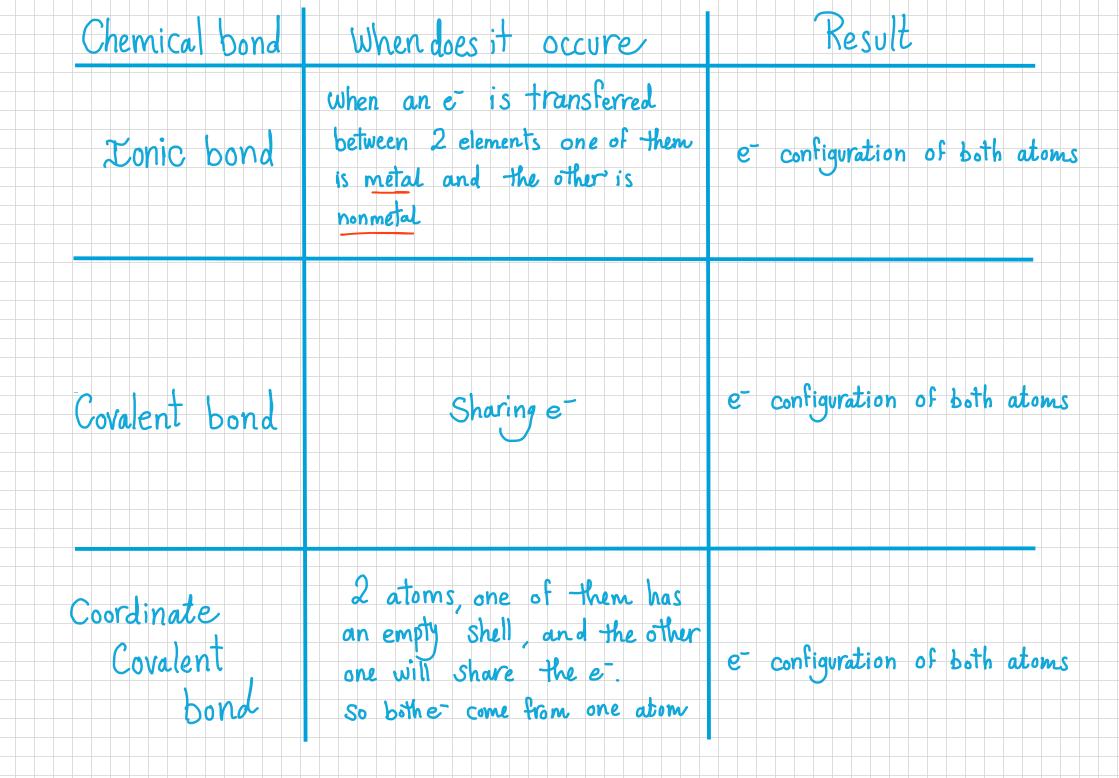
the nearest noble gas, Ne and Ar respectively, both satisfy the octet rule.

Nobel gas are elements which are unreactive and stable Ex: He . Ne . Ar He : $1s^2$ Ne : $1s^2$, $2s^2$, $2p^6$ Ar : $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^6$

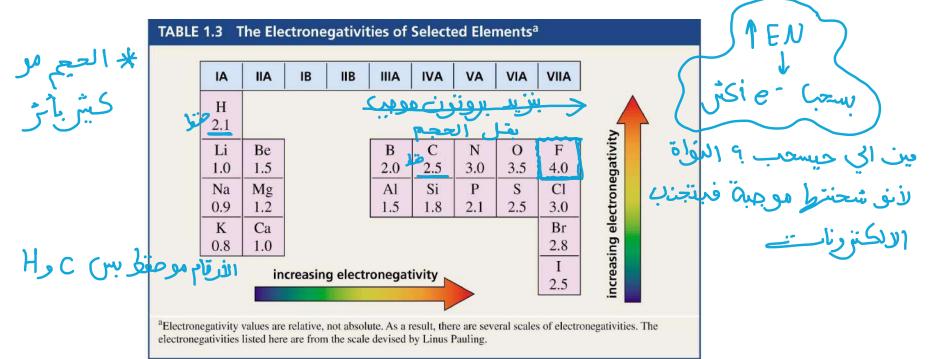
Dr. Eyad Younes

2. Covalent Bonding

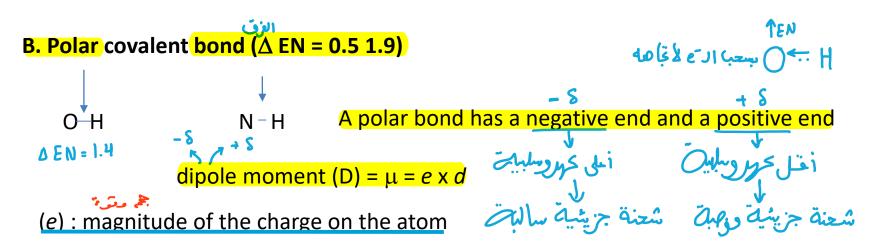

- Ionic bonds occur when an e⁻ is transferred between a metal and nonmetal.
- Covalent bonds are resulting from sharing e⁻


 $2 \text{ H} \rightarrow \text{H} \cdot \text{H}$

The result is both atoms have a [He] e⁻ configuration, *i.e.* The bond is commonly display as a line rather than a pair of $e^{-}(:)$, *i.e.* H \bigcirc H rather than H : H Example 2 $\cdot \dot{C} \cdot 4 \cdot H \longrightarrow H \cdot C \cdot H + -\dot{C} - H$ $H \cdot \dot{C} \cdot H + -\dot{C} - H$ A second general version of a covalent bond is possible. This occurs when BOTH e⁻ come from <u>one atom</u>: a coordinate covalent bond ربلية تناستين


الآخريمية ٥ فلك فارخ

 $NH_3 + H^+ \rightarrow NH_4^+$



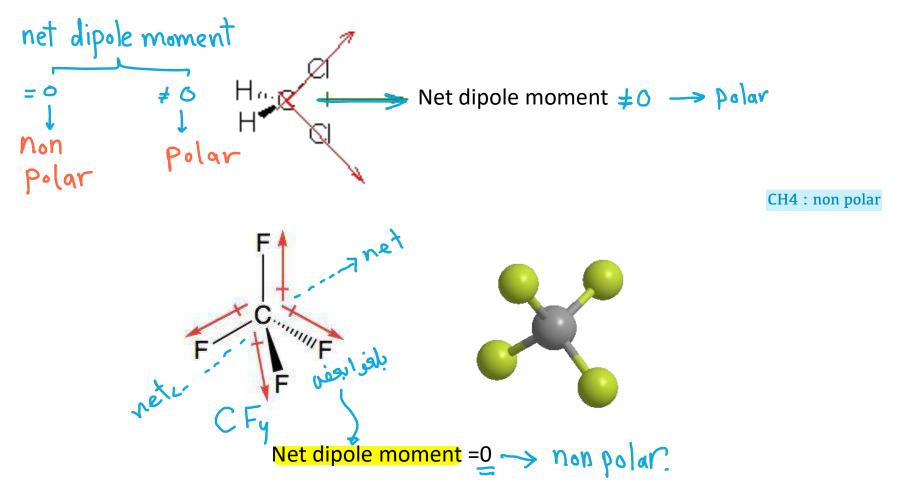
Electronegativity (EN) : measures the tendency of an atom to attract a shared pair of electrons (or electron density).

Covalent bonds can be classified as A. Nonpolar covalent bond (Δ EN = 0-0.5) بتوريب A. A i A.-B Examples C-C C-H H-H cl-cl

(d) : distance between the two charges

Table 1.4 The Dipole Moments of Some Commonly Encountered Bonds							
Bond	Dipole moment (D)	Bond	Dipole moment (D)				
н-с	0.4 nonpolar	с-с	0				
H-NS-	pless polar <u>1.3</u> Polar more polar <u>1.5</u>	C—N	0.2				
H-0/	more polar <u>1.5</u>	C - O	0.7				
H-F	1.7	C-F	1.6				
H—Cl	1.1	C-Cl	1.5				
H—Br	0.8	C—Br	1.4				
н—і	0.4	C—I	1.2				

if The Δ EN increases the polarity increases


Bond Polarity & Electronegativity (cont'd)

The result of polar covalent bonding is that the e⁻ pair spend more time near the more EN atom. This means it will acquire a permanent excess negative charge. The other atom acquires a permanent excess positive charge. This is indicated by a δ^+ or δ^- (where δ means a "partial charge") or a dipole arrow which points from the positive end of the bond to the negative end.

Bond Polarity & Electronegativity (cont'd)

The more polar the molecule the stronger the dipole moment. The molecular dipole moment is the vector sum of the bond moments, *i.e.*

Important terms from the first lecture:

- give up : يخسر يستقبل و يحصل : accept -- retain : يحافظ العدد الذري : atomic number -العدد الكتلى : mass number spdf مدار ذري زي : atomic orbital -المستوى : shell -المستوى و المدار الابعد : outermost shell -الكترونات التكافق : Valence electron -الترتيب :configuration -رابطة تساهمية تناسقية : coordinate covalent bond -- acquire : تکسب دائم : permanent -جذب: attract -

