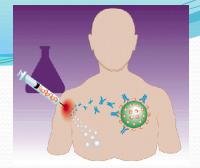

Immunization

Active and passive immunity

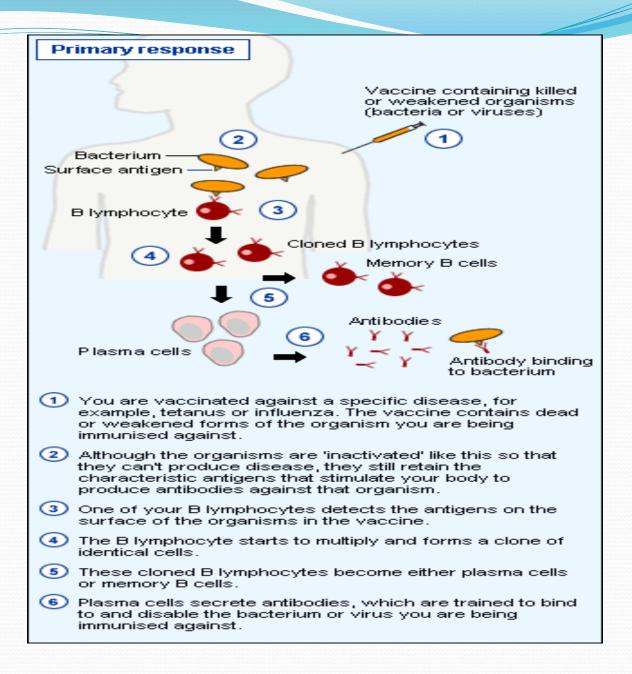
- Active immunity: Resistance developed in response to stimulus by an antigen (infecting agent or vaccine) and is characterized by the production of antibodies by the host.
- Passive immunity: Immunity conferred by an antibody produced in another host. It may be acquired naturally or artificially (through an antibody-containing preparation).



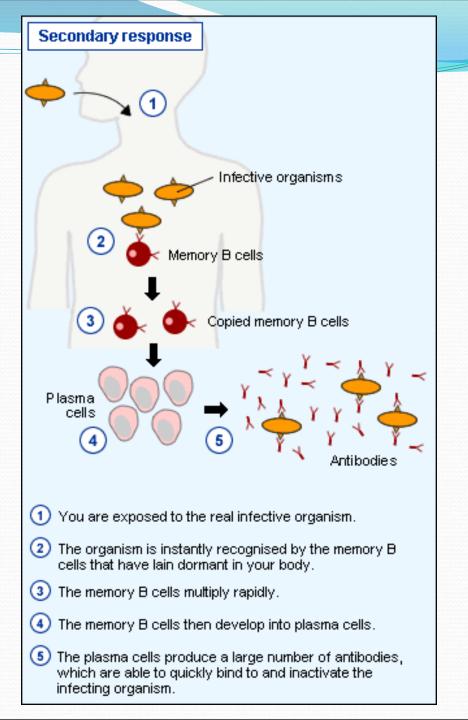
Immunoglobulins

- Immunoglobulins: Two types of immunoglobulin preparations are available for passive immunization:
- Antisera or antitoxins: Human or animal serum containing one or more antibodies that are specific for one or more antigens and are administered to confer immunity.

Vaccination



- Vaccination is a method of giving antigen to stimulate the immune response through active immunization.
- A vaccine is an immuno-biological substance designed to produce specific protection against a given disease.
- A vaccine is "antigenic" but not "pathogenic".


Importance of Vaccination

- The most effective and safe methods of preventing deadly infections including viral and bacterial diseases
- Childhood immunization became part of routine health care almost in all countries
- As a results of vaccination: Poliomyelitis, Diphtheria, Tetanus have disappeared in developed countries. Measles, Rubella and Pertussis become rare. While smallpox has been eradicated.

Primary response to a vaccine

Secondary response to an infection primed by vaccine

Types of vaccines

- Live vaccines
- Attenuated live vaccines
- Inactivated (killed vaccines)
- Toxoids
- Polysaccharide and polypeptide (cellular fraction) vaccines
- Surface antigen (recombinant) vaccines.

1. Live vaccines

- Live vaccines are made from live infectious agents without any amendment.
- The only live vaccine is "Variola" small pox vaccine, made of live vaccinia cow-pox virus (not variola virus) which is not pathogenic but antigenic, giving cross immunity for variola.

2. Live attenuated (avirulent) vaccines

- Virulent pathogenic organisms are treated to become attenuated and avirulent but antigenic. They have lost their capacity to induce full-blown disease but retain their immunogenicity.
- Live attenuated vaccines should not be administered to persons with suppressed immune response due to:
 - Leukemia and lymphoma
 - Other malignancies
 - Receiving corticosteroids and anti-metabolic agents
 - Radiation
 - Pregnancy

3. Inactivated (killed) vaccines

• Organisms are killed or inactivated by heat or chemicals but remain antigenic. They are usually safe but less effective than live attenuated vaccines. The only absolute contraindication to their administration is a severe local or general reaction to a previous dose.

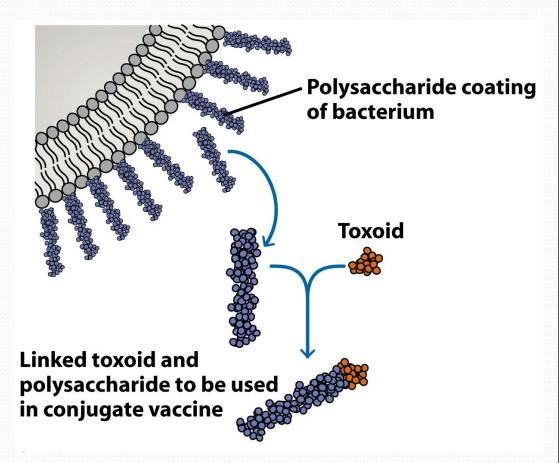
4. Toxoids

- They are prepared by detoxifying the exotoxins of some bacteria rendering them antigenic but not pathogenic. Adjuvant (e.g. aluminum precipitation) is used to increase the potency of vaccine.
- The antibodies produces in the body as a consequence of toxoid administration neutralize the toxic materials produced during infection rather than act upon the organism itself. In general toxoids are highly efficacious and safe immunizing agents.

5. Polysaccharide and polypeptide (cellular fraction) vaccines

 They are prepared from extracted cellular fractions e.g. meningococcal vaccine from the polysaccharide antigen of the cell wall, the pneumococcal vaccine from the polysaccharide contained in the capsule of the organism, and hepatitis B polypeptide vaccine.

• Their efficacy and safety appear to be high.


6. Surface antigen (recombinant) vaccines.

- It is prepared by cloning HBsAg gene in yeast cells where it is expressed. HBsAg produced is then used for vaccine preparations.
- Their efficacy and safety also appear to be high.

Conjugate vaccines

A **conjugate vaccine** is created by covalently attaching a (polysaccharide organism) <u>antigen</u> to a <u>carrier</u> <u>protein</u> (preferably from the same microorganism), thereby conferring the immunological attributes of the carrier on the attached antigen.

This technique for the creation of an effective immunogen is most often applied to bacterialpolysaccharides

Types of vaccines

Live vaccines	Live Attenuated vaccines	Killed Inactivated vaccines	Toxoids	Cellular fraction vaccines	Recombinant vaccines
•Small pox variola vaccine	 BCG Typhoid oral Plague Oral polio Yellow fever Measles Mumps Rubella Intranasal Influenza Typhus 	 Typhoid Cholera Pertussis Plague Rabies Salk polio Intra- muscular influenza Japanise encephalitis 	•Diphtheria •Tetanus	 Meningococcal polysaccharide vaccine Pneumococcal polysaccharide vaccine Hepatitis B polypeptide vaccine 	•Hepatitis B vaccine

Routes of administration

- Deep subcutaneous or intramuscular route (most vaccines)
- Oral route (sabine vaccine, oral BCG vaccine)
- Intradermal route (BCG vaccine)
- Scarification (small pox vaccine)
- Intranasal route (live attenuated influenza vaccine)

Scheme of immunization

- Primary vaccination
 - **One dose vaccines** (BCG, variola, measles, mumps, rubella, yellow fever)
 - Multiple dose vaccines (polio, DPT, hepatitis B)
- Booster vaccination

To maintain immunity level after it declines after some time has elapsed (DT, MMR).

Vaccine	Type of vaccine	Disease
BCG	Live attenuated Bacteria	Tuberculosis
OPV (Oral Polio)	Live attenuated Virus	Poliomyelitis
DPT	-D & T (Fractional (Toxoid) -Pertussis (Inactivated whole bacteria)	_Diphtheria & Tetanus _Pertussis
Measles	Live attenuated Virus	Measles

Vaccine	Type of vaccine	Disease	
MMR	Live attenuate Virus (Measles +Mumps+ Rubella)	Measles -Mumps -Rubella	
HBV	Recombinant (HBSAg)	Hepatitis B	
Hib	Fractional(Conjugate Polysaccharide)	Haemophilus Influenza B	
IPV	Inactivated polio virus	Poliomyelitis	

Age	Vaccine	
1 st contact	BCG	
2 months	DaPT1 IPV1+Hib+1HepB1	
3 months	DaPT2 IPV2+Hib2+HepB2+OPV	
4 months	DaPT3 IPV3+Hib3+HepB3+OPV	
9 months	Measles + OPV	
12 months	MMR1	
18 months	DPTbooster1 +OPV booster1 +MMR2	

Levels of effectiveness

- Absolutely protective(100%): yellow fever vaccine
- Almost absolutely protective (99%): Variola, measles, mumps, rubella vaccines, and diphtheria and tetanus toxoids.
- Highly protective (80-95%): polio, BCG, Hepatitis B, and pertussis vaccines.
- Moderately protective (40-60%) TAB, cholera vaccine, and influenza killed vaccine.

Antibody Titer

- A test to measures the presence and amount of antibodies in blood against a particular type of tissue, cell, or substance
- Titer determines if you have adequate protection against a disease
- May need to give booster if titer too low
- E.g., happens with HepB vaccine

Hazards of Immunization

- The adverse reactions that may occur include:
- 1. Reactions inherent to inoculation: local and general
- 2. Reactions due to faulty techniques: during manufacturing or giving of vaccine
- 3. Reactions due to hypersensitivity
- 4. Neurological involvement: GuillainBarre syndrome in association with the swine influenza vaccine
- 5. Provocative reactions: occurrence of new disease not connected to the vaccine