

Subject :

Lec no : 2

Done By: Baraa Safi

بالمحالب 2. Algae

- Description: photosynthetic aquatic eukaryotes
- Can be both unicellular and multicellular and multicellular
- Most algae live in fresh or sea water where they can either be free-floating or attached to the bottom
- Types: brown, red, green
- All algae contain a pigment called chlorophyll and they make their own food by photosynthesis (*interative contained on the conta*

الفطريات **3. Fungi**

- Description: a group of eukaryotic organisms that includes microorganisms such as yeasts, molds, and mushrooms
- <u>ساعدمار تعالی النبات</u> • Nutrient absorbers, plant decomposers, does not (مت لوکاندلونی آخضر) مسالی الفناء من الله مالیک
- ~100 human pathogens
- Types: yeasts (unicellular fungi), molds (filamentous fungi)
 fungi)
- القدم الرياضية (لما يكونه المريفة تحيريلب الخطريات بين أصابعة) • Diseases: ringworm (pictured), <u>athlete's foot</u>, etc.

بويعيز الفطريات أنها تتدعم مد نف هاوتتكاثر الله ف) بالإضافة أنها تحمل ألياف أثناء التكاثر

4. Helminthes

م تشغذي على الأكل اللي بوصل المحدة

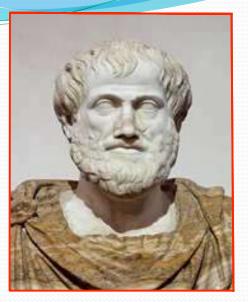
خصف عديد وغقدان الوزند.

- Description: are worm-like parasites that survive by feeding on a living host to gain nourishment and protection, sometimes resulting in illness of the host
- Multicellular animal parasites, engulfers and absorbers
- Types: flatworms, roundworms, tapeworm, etc
- Diseases: hook worm, tape worm, etc.
 Diseases: hook worm, tape worm, etc.

5. Protozoa

- Description: is an informal term for single-celled eukaryotes, either free-living or parasitic, which feed on organic matter such as other microorganisms or organic tissues and debris.
- unicellular , flagellates, ciliate
- Types: eukaryotes, engulfers and absorbers
- wet conditions, no cell wall, ~30 human pathogens
- Diseases: malaria, giardiasis, amoebic dysentery, etc.

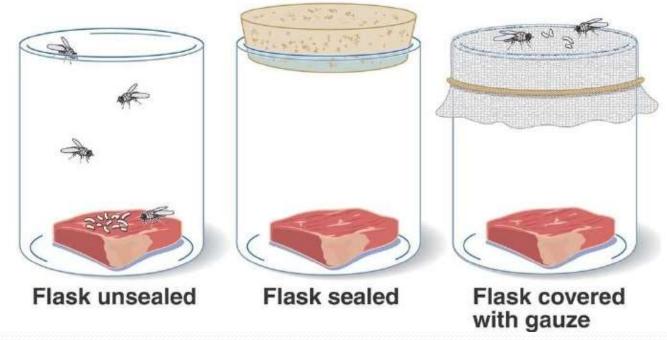
6. Viruses



- Description: is a small infectious agent that replicates only inside the living cells of an organism.
- Viruses can infect all types of life forms, from animals and plants to microorganisms, including bacteria and archaea
- viruses are not cells but some viruses do have lipid envelopes (acellular),
- Diseases: common cold, flu, HIV, etc. Corona

History

Aristole believed that living things generate from non-living matters "Spontaneous generation" 350 BC

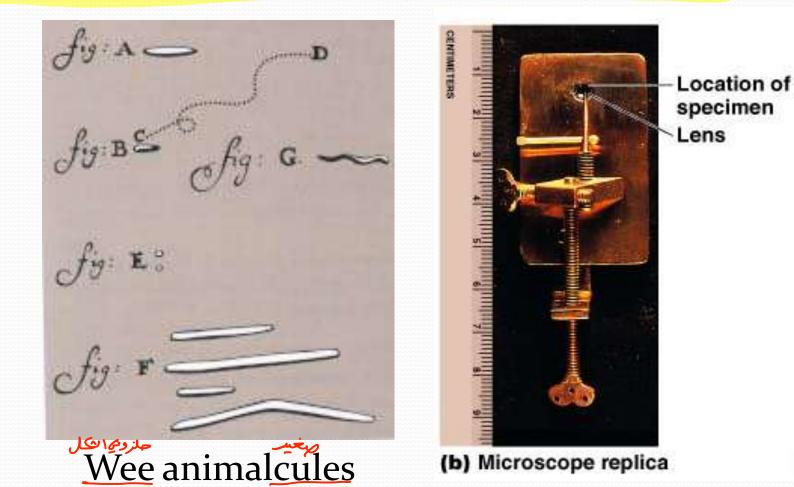

This belief remained unchallenged for more than 2000 years.

Robert Hooke, 1665 Little boxes – cells Cell theory – all living things are made up of cells

Hooke's microscope was capable of showing large cells, it lacked the resolution so he didn't see the microbe

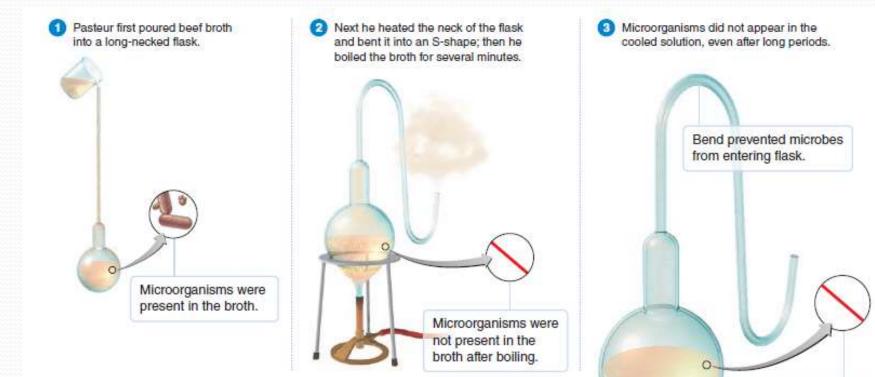
Francesco Redi, 1668

Meat exposed to flies became infestedthey claimed that fresh air was needed for spontaneous generation.



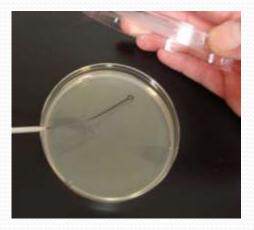
The father of microbiology

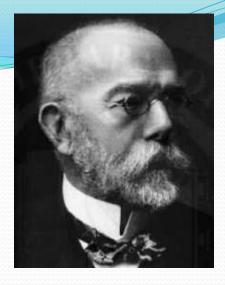
Anton van Leeuwenhoek, 1674


1st person to actually see living microorganisms

رح ييجي عليه سؤال بالإمتحاني

Louis Pasteur, 1861

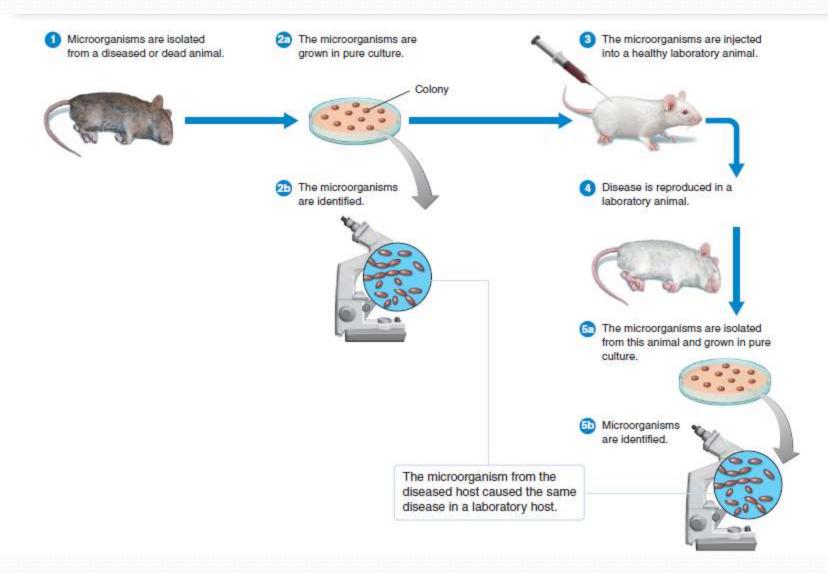

Disproving the Theory of Spontaneous Generation



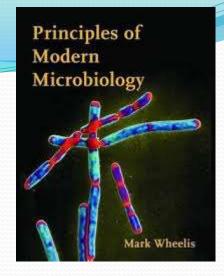
• Pasteur demonstrated that microorganisms are present in the air and can contaminate sterile solutions, but that air itself doesn't create microbes. Microorganisms were not present even after long periods.

Robert Kock, 1876

- Experimented with **medium** to grow bacteria
- Using agar (a gelatin-like product derived from seaweed)
- Add various nutrients necessary to grow certain organisms.
- He provided proof that a bacterium causes anthrax (**Koch's postulates**) used to prove that a specific microbe causes a specific disease



Koch's postulates : Understanding Disease


- Pathogen must be present in all cases of disease (ريفلية خاطئة)
- Pathogen must be isolated and grown in lab in pure culture
- Pathogen from pure cultures must cause disease when inoculated into healthy, susceptible lab animal
- Same pathogen must be isolated from the diseased lab animal

Robert Kock experiment

Modern Microbiology

- Molecular biology
- Immunology
- Recombinant DNA and genetic engineering
- Laboratory Medicine and pathology
- Prevention and treatment
- Emerging infections: AIDS, SARS, CORONA, etc

Microbes Benefit to Humans

A huge number of beneficial bacteria is found in our digestive system.

- Bacteria are primary decomposers
- Microbes produce various food products
- Microbes produce Antibiotics
- Bacteria synthesize chemicals that our body needs, but cannot synthesize (Vitamin b and K)
- Normal microbial flora prevents potential pathogens from gaining access to our body
- Using bacteria to control the growth of insects
- Using microbes to clean up pollutants and toxic wastes
- Bacteria can be manipulated to produce enzymes and proteins they normally would not produce (insulin)
- Microbes form the basis of the food chain

Thank you...