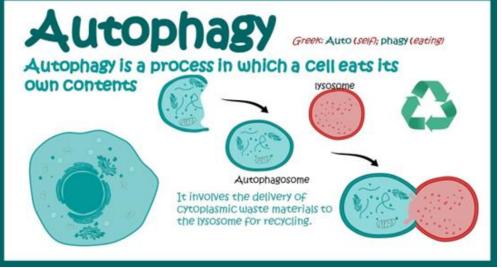
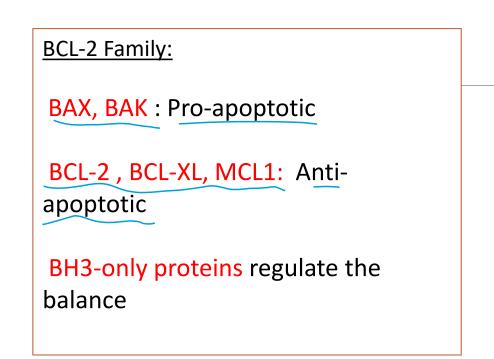




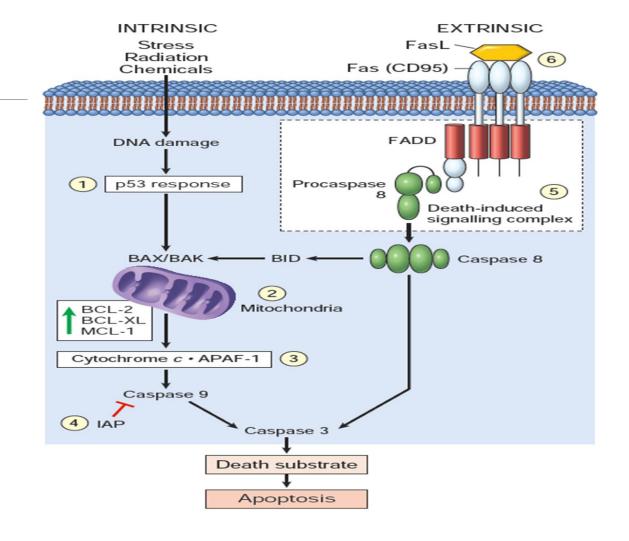
## 3. Altered cellular metabolism


#### **AUTOPHAGY:**

- A state of severe nutrient deficiency in which cells arrest their growth and cannibalize their own organelles, proteins, and membranes (into lysosomes) as carbon sources for energy production.


-Cancer cells may accumulate mutations avoiding autophagy OR alter the process making it inefficient.

**Result**: Prolonged cell life!,


Cancer cells aim to avoid antophagy



# 4- Evasion of apoptosis:



- Cancer cells are subject to several intrinsic stresses that can initiate apoptosis, particularly DNA damage.



- Tumor cells frequently contain mutations in genes that regulate apoptosis, making the cells **resistant to cell death.** 

**Apoptosis:** 

**Extrinsic pathway:** - Some tumors have  $\sqrt{}$  levels of CD95  $\rightarrow \downarrow \downarrow$  Apoptosis

#### Intrinsic pathway (mitochondrial pathway):



(2) overexpression of anti-apoptotic members of the BCL2 family, which protect cells from the action of the pro-apoptotic members of the BCL2 family.

<u> الحادية السرطانية لد تد حل ما مرحله الشيخ حصح د ال تر من احتمال الم بر محصح ما الم الم الم الم الم الم الم الم</u>

# 5.Limitless replicative potential (immortality):

-Most normal cells have a capacity of at most 70 doublings. Thereafter, the cells lose the ability to divide and enter replicative senescence due to the progressive shortening of telomeres at the ends of chromosomes.

**Telomeres** Are specialized structures at the end of chromosomes that are shortened after each division and may play a role in determining the life of individual cells.

#### Senesence JI The

- Shortening is prevented by **TELOMERASE** (Active in stem cells, not in somatic cells).

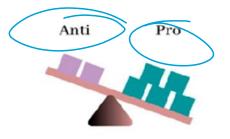
- Tumor cells, unlike normal cells, are capable of limitless replication.

In many cancers, telomerase is reactivated. \_



- Tumors remain small or in situ (< 1-2 mm,Diameter) without angiogenesis.

Juporrance of anyogeneses (1)- Supplies needed nutrients and oxygen. (2) Newly formed endothelial cells <u>stimulate the growth of adjacent tumor cells by secreting</u> growth factors. <u>Tum group of adjacent to Stiguts</u> <u>and a stimulate the growth</u> of adjacent tumor cells by secreting


-The resulting tumor vasculature is effective at delivering nutrients and removing wastes, it is not entirely normal; the vessels are leaky and dilated.



the Angiogenic factors must be more than Angiogenic inhibitors

-The molecular basis of the angiogenic switch involves increased production of angiogenic factors and/ or loss of angiogenic inhibitors.





- These factors may be produced by the tumor cells or by inflammatory

cells (e.g., macrophages) or resident stromal cells (e.g. fibroblasts).

## **Angiogenic factors:**

 $(I)- Controlled by HYPOXIA which induces angiogenic factors by tumor cells <math>\Rightarrow$  Hypoxia-Inducible Factor (HIF-1 $\alpha$ )  $\rightarrow$  VEGF  $\rightarrow$  stimulates the proliferation of endothelial cells and guides the growth of new vessels toward the tumor.

②- Gain-of-function <mark>mutations in *RAS* or *MYC* upregulate the production of VEGF:个 VEGF</mark>

Proteases from tumor or stroma can release the basic angiogenic FGF stored in the ECM



- 1.Thrombospondin1(TSP-1) induced by P53
  - Thus, loss of p53 in tumor cells provides a more permissive environment for angiogenesis
- 2. VHL protein destroys HIF-1  $\alpha \rightarrow$  No VEGF
- Germline mutation of VHL -> von Hippel-Lindau Syndrome -> hereditary renal CA, CNS hemangiomas.
- 3. Angiogenesis inhibitors:

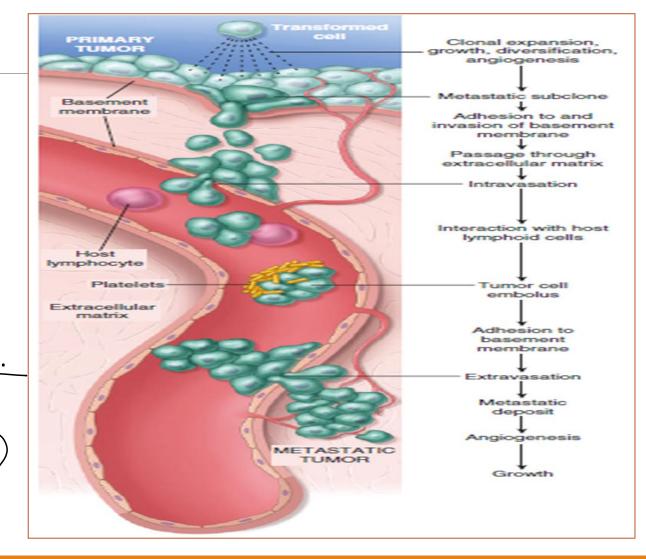
Angiostatin, Endostatin, Vasculostatin from stromal cells in ECM.

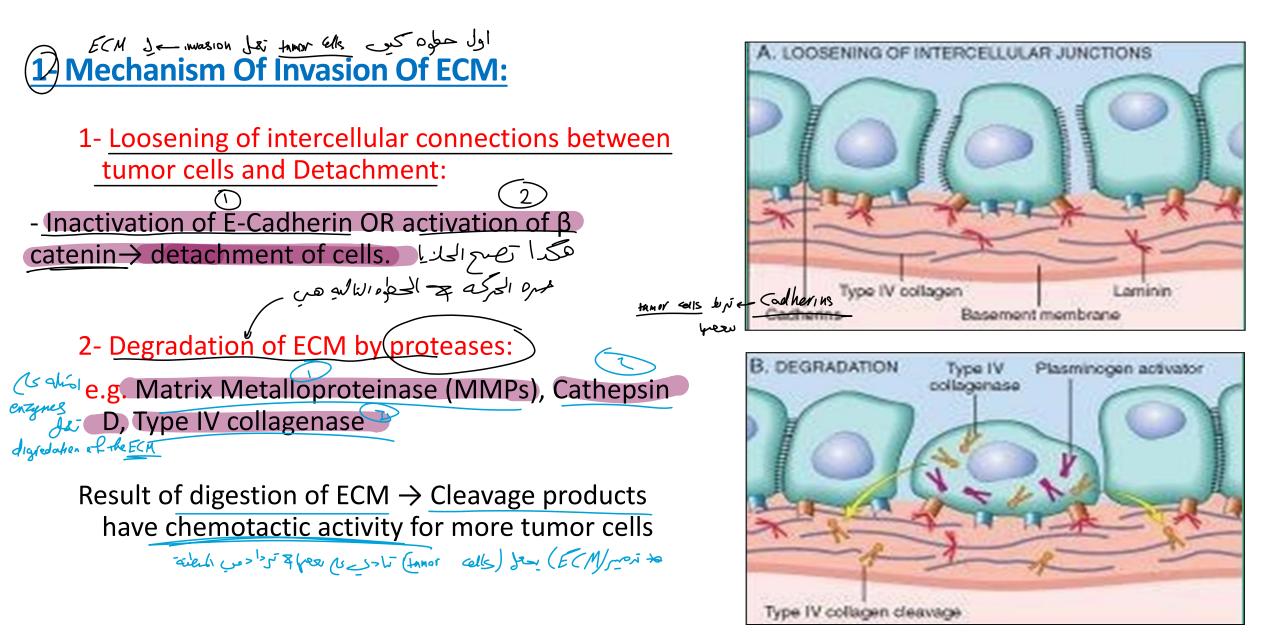
↑ vascular density = Poor prognosis

- hall marke of Cancer

#### 7- Ability to invade & metastasize:

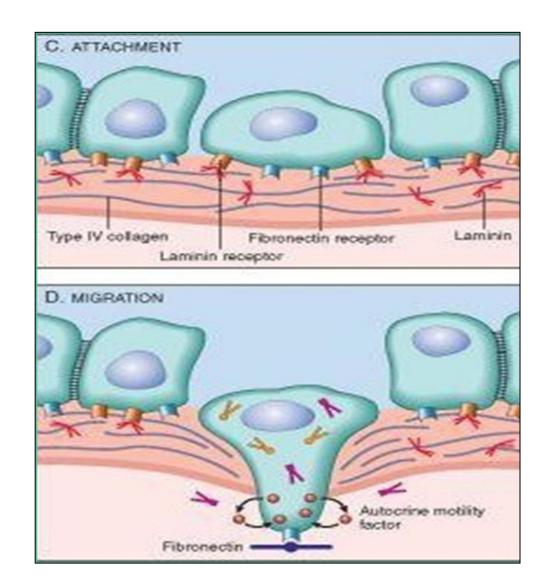
the most Important factor & deficientate between beingh & milignent timer is <


-Tumors may generate clones and accumulate mutations, leading increased rate of growth, Invasion, Metastases ...


#### Metastasis occurs in two phases:

**1- Invasion of extracellular matrix** - like bismed weakling
 - Composed of collagens, glycoproteins & proteoglycans.

2- Vascular dissemination and homing of tumor cells


م ترجد مکان اجر بعدًا من مرجم موند المعنو



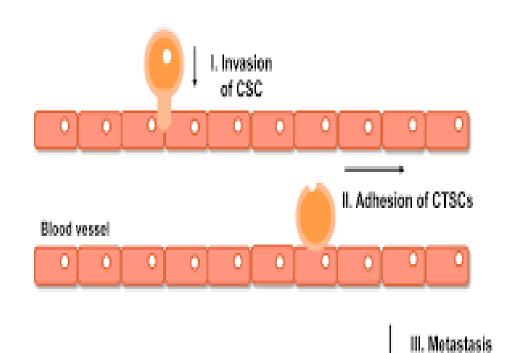


3- Attachment of tumor cells to matrix components
4- Migration of tumor cells (*Locomotion*):
-Propelling tumor cells through the degraded basement membranes and zones of matrix

- Such movement seems to be directed by
  - Tumor-derived cytokines
  - Motility factor from Stromal cell






## **2- Vascular dissemination:**

**1- Invasion of the circulation:** 

معتج (جهرو) ليول الجلو Adhesion to endothelium → retraction of endothelium → vessel

2- Attack by NK cells, some escape by formation of a thrombus/embolus
\* Some the scape the munity through thrombus & embolies
3- Escape from circulation:

Adhesion to endothelium  $\rightarrow$  retraction of endothelium  $\rightarrow$  escape to tissue





# مكي المراب مستشركل ورس ال what influences site of metastases ?

- Anatomical Location and vascular drainage of the primary tumor becouse most of the venus dringe in the GL goes to

the liver

- Complimentary adhesion molecule between tumor cells & target organs
- Chemoattractants liberated by target organs
- Protease inhibitors present in certain tissues

EXAMPLES OF TROPISM (HOMING) → Cancers doesn't follow the antomical location
Iung Carcinoma → Adrenals & Brain
Neuroblastoma → Liver & Bone
Liver & Bone
Less common sites of metastases: muscle, skin, thyroid, heart ...etc.

- Spleen & Cartilage are almost never involved by metastatic tumors.

# 8. Evasion of Immune Surveillance

#### **TUMOR IMMUNITY: Host Defense Against Tumors:**

-Normal immunity present to protect against the development of tumors -Tumors have ANTIGENS counteracted by ANTIBODIES in the body

- The direct demonstration of tumor-specific T cells and antibodies in patients

- When there is no immunity (immunosuppressed patients)  $\rightarrow$  More Cancers
- Patients with congenital **immune deficiency** have **<b>↑risk of cancer**

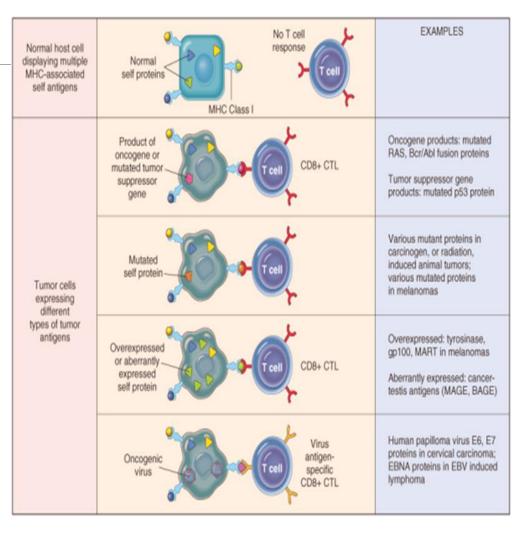
ملقر

## \*الالح الحلايا أوالمواد الني تقوم عل استام معاعد جم السرطالت

T lympho gyles
 - CTLs (CD8+ T-Cells)
 CD9+(T-halper)
 NK cells

- **3-** T helper cells
- (y)- Macrophages
- 5 Humoral (Antibodies) Lymphicytes type 73 JI new

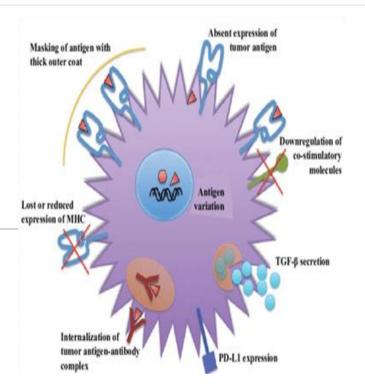
#### **Types of tumor antigens:**


#### 1- Products of mutant oncogenes & tumor suppressor genes

2- Mutant proteins in chemical and radiation-induced tumors

3- Overexpressed or aberrantly expressed cellular proteins.

e.g.: Tyrosinase in melanoma 4- Tumor AG produced by oncogenic viruses in HPV (E6, E7) 5- Oncofetal AG: CEA and α fetoprotein — subject with the second s


6- Several mucins MUC-1 Veachon against them



#### How do tumor cells escape immune surveillance?

-<u>In immunocompetent patients, tumors may avoid the immune</u> system by :

- Selective outgrowth of antigen-negative variants.
- Loss or reduced expression of MHC molecules on tumor cell surface
- Immunosuppression mediated by expression of certain factors (e.g. Pd-1 ligands) by the tumor cells.
- Antigen masking
- Downregulation of co-stimulatory molecules (sensitization of T- cells requires costimulatory molecules).



# Genomic Instability as an Enabler of Malignancy:

- Individuals born with inherited **defects in DNA repair genes** are at greatly **increased risk for the development of cancer.** 

- Includes:
  - Mismatch repair
  - Nucleotide excision repair
  - Recombination repair

### **<u>1- Mismatch repair genes</u>:**

- These repair errors in the pairing of nucleotides during cell division (Spell Checkers) e.g. G+T instead of A+T.
- Defective in (HNPCC <u>Hereditary Nonpolyposis Colonic Ca. syndrome</u>):
  - This syndrome accounts for 2-4% of all colonic ca, AD.
- Carcinomas of the colon affecting predominantly the cecum and proximal colon (right colon)
- A characteristic finding in the genome of patients with mismatch repair defects is microsatellite instability (MSI).

## **2- Nucleotide excision repair genes**

- Defective in Xeroderma Pigmentosum:
  - Autosomal recessive disorder.
  - Increased risk for cancers arising in sun-exposed skin.

-UV rays in sunlight cause cross-linking of pyrimidine residues. The nucleotide excision repair system repairs such DNA damage.

- Several proteins are involved in nucleotide excision repair, and the inherited loss of any one of these can give rise to xeroderma pigmentosum.

#### **3. DNA Repair by Homologous Recombination:**

 A group of AR disorders comprising Bloom syndrome, ataxia-telangiectasia, and Fanconi anemia is characterized by hypersensitivity to DNA-damaging agents.

Theses have defects in DNA Repair by Homologous Recombination

#### BRCA-1 & BRCA-2: -- mutated in Familial Cancer & not Sported :=

- Cells with a defective version of these genes develop chromosomal breaks and severe

aneuploidy. Both genes seem to function, at least in part, in the homologous

recombination DNA repair pathway

یکرد: مسرّیطی د(BRCA2) 50% of familial breast cancers & ovarian CA

- Rarely inactivated in sporadic cases.