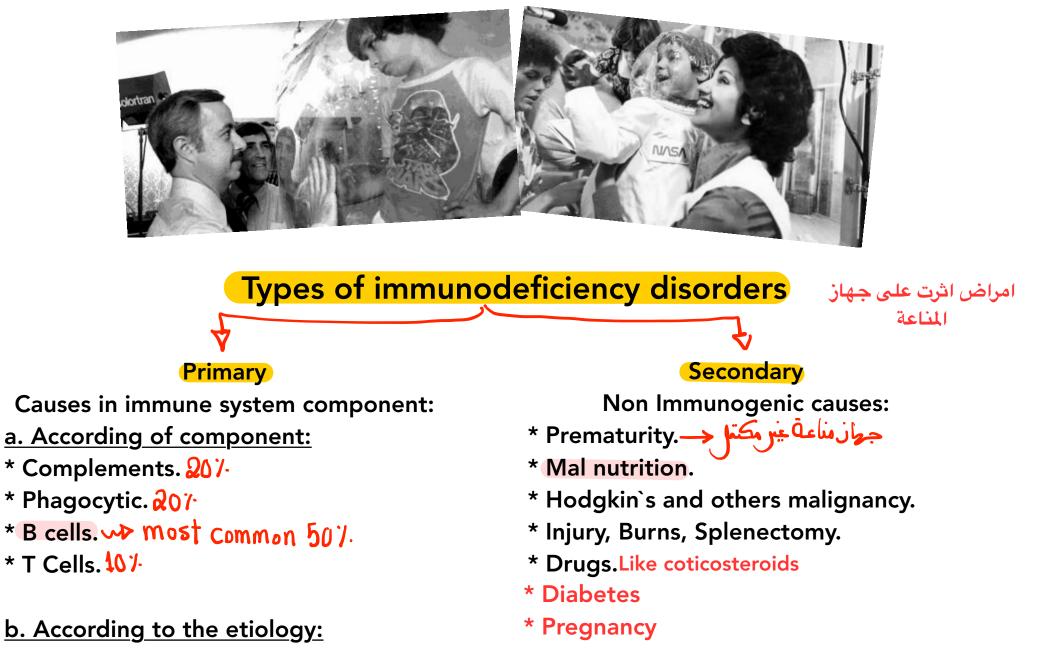

Immono logy

Title : Immunodeficiency Diseases

Lec no : 13

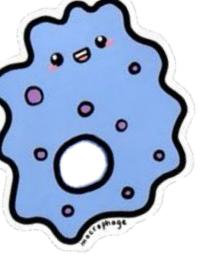
Done By : Tareq Sbool + Omar Shanaq + Johainah Taha



Introduction

Deficiencies of host defense systems result in an immunologic imbalance that can lead to a susceptibility to infection, an autoimmune disease, or a predisposition to malignancies.

ما يميز هدول المرضى هو زيارتهم المتتابعة للمشفى و ال recurrent infection



* Congenital (X-linked disease)

ال main target لهالمرض هو ال immune نهالمرض هو ال main target * system لهيك ما اعتبرناه system

- * Embryogenesis (Digoerge syndrome).
- * Idiopathic

1. B-cell defect

B cell --> plasma cell --> antibody --> helps in opsonization for larg size extracellular bacteria --> damage

* Causative agents are most commonly extracellular organisms, namely pyogenic and enteric bacteria, because patients are deficient in serum antibodies necessary for phagocytosis.

- * Recurrent infections with encapsulated bacteria
- * Chronic sinupulmonary infections

* Sites of infection include the skin, sinuses, meninges, and the respiratory, urinary, and gastrointestinal tracts.

هدول مهمين اسئلة كيسات 💵

Bruton's Agammaglobulinemia

- * Immunology:
- * No B cells or non functional B cells including defective signaling or defective BCR
- * Markedly low levels of Immunoglubulines
- * Clinical:
- * Child clinically well for first 6 months of life
- * Recurrent upper/lower respiratory tract infections with encapsulated bacteria (S. pneumonia)
- * Sepsis, meningitis, skin infections
- * Short life span

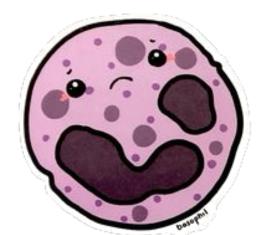
العلاج اني بعطيه antibody طالما الB cell عندهم مشكلة بانتاجهم Treatment: IVIG, antibiotic therapy

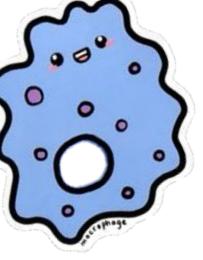
IgA deficiency

Encapsulated Bacteria

m - Yes Some Killer Bacterias Have Pretty Nice Capsule

Yersinia pestis


Streptococcus pneumoniae Klebsiella pneumoniae **Bacillus anthracic** Haemophilus influenza Pseudomonas aeruginosa Neisseria meningitidis Cryptococcus Neoformans


- <u>* Immunology:</u>
- * Most common humoral antibody deficiency
- * Isolated low IgA level Found in mucous membranes
- * Manifestation:
- * 50-80% asymptomatic
- * **Recurrent** sinopulmonary infections most frequent manifestation
- * May have severe malabsorption (chronic diarrhea)
- * Increased risk of autoimmune disorders
- **<u>* Treatment: Broad spectrum antibiotics</u>**

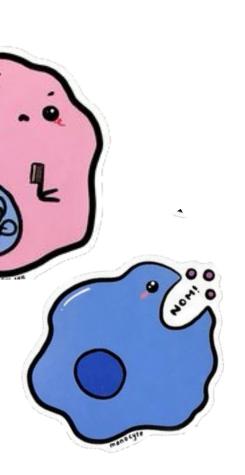
2. T-cell deficiency disorders

Increase risk for intercellular infecton (candida ,mycobacteria,viral).

* Also known as cell-mediated (cellular) immuno-deficiencies, result from abnormalities in T-cell functions.

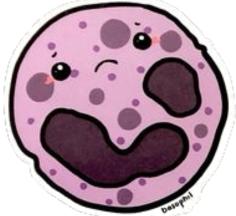
* Antibody production is also likely to be affected in patients with severe T-cell abnormalities because T cells are important immunoregulators of B-cell differentiation and function.

* Recurrent infections --Causative agents are intracellular pathogens (e.g., herpesviruses, mycobacteria, fungi (Candida), and protozoa (Pneumocystis carinii, Toxoplasma).


DiGeorge Syndrome

- <u>* Immunology:</u>
- * Poorly developed or functioning thymus
- * Depression of T cell numbers
- * Absence of T cell response
- * Humoral response to T independent antigens only
- <u>* Clinical</u>: Overwhelming infections with viruses, fungi, bacteria
- <u>* Treatment: correct hypocalcemia</u>, cardiac defects, fetal thymus transplant

this syndrome is caused by a defect in the pharyngeal pouch leading to: caradic defect , RS defect, Thyms defect.


-we can find in this patient : hypocalcemia, cardiac defects, pulmonany defect, thyms problem.

C	~	J	
ه لر	0	0)
) •	0	0	
•		Ň	•
1		•	1
5	J. C. C.	noge	

3. Combined Deficiencies

* Immunological abnormalities are combined to B cells and T cells

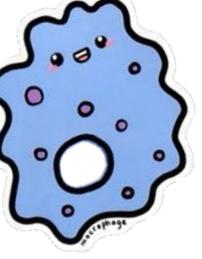
(mix between T +B cell defect) -recurrent infection in all type

Sever Combined Immune Deficiency (SCID)

- <u>* Immunology:</u>
- * Defects in stem cell maturation with various genetic defects
- * No TCR or defective TCR
- * Defective cell signaling
- * Defective IL 2
- * Manifestations seen in first 3 months of life
- * Recurrent, severe bacterial, viral, fungal, and protozoan infections (usually respiratory infections)
- * Failure to thrive, diarrhea, dermatitis, candidiasis
- * Death at early age
- <u>* Treatment: isolation, treat underlying infections, bone marrow transplant</u>

هاي الsyndrome مهمة syndrome

- <u>* Immunology:</u>
- * X linked disorder
- * Affects platelet numbers/function -> Bleeding is complocation ->
- * Affects T cell function
- * Cytoskeleton of lymphocytes affected
- * Lower amounts of IgM

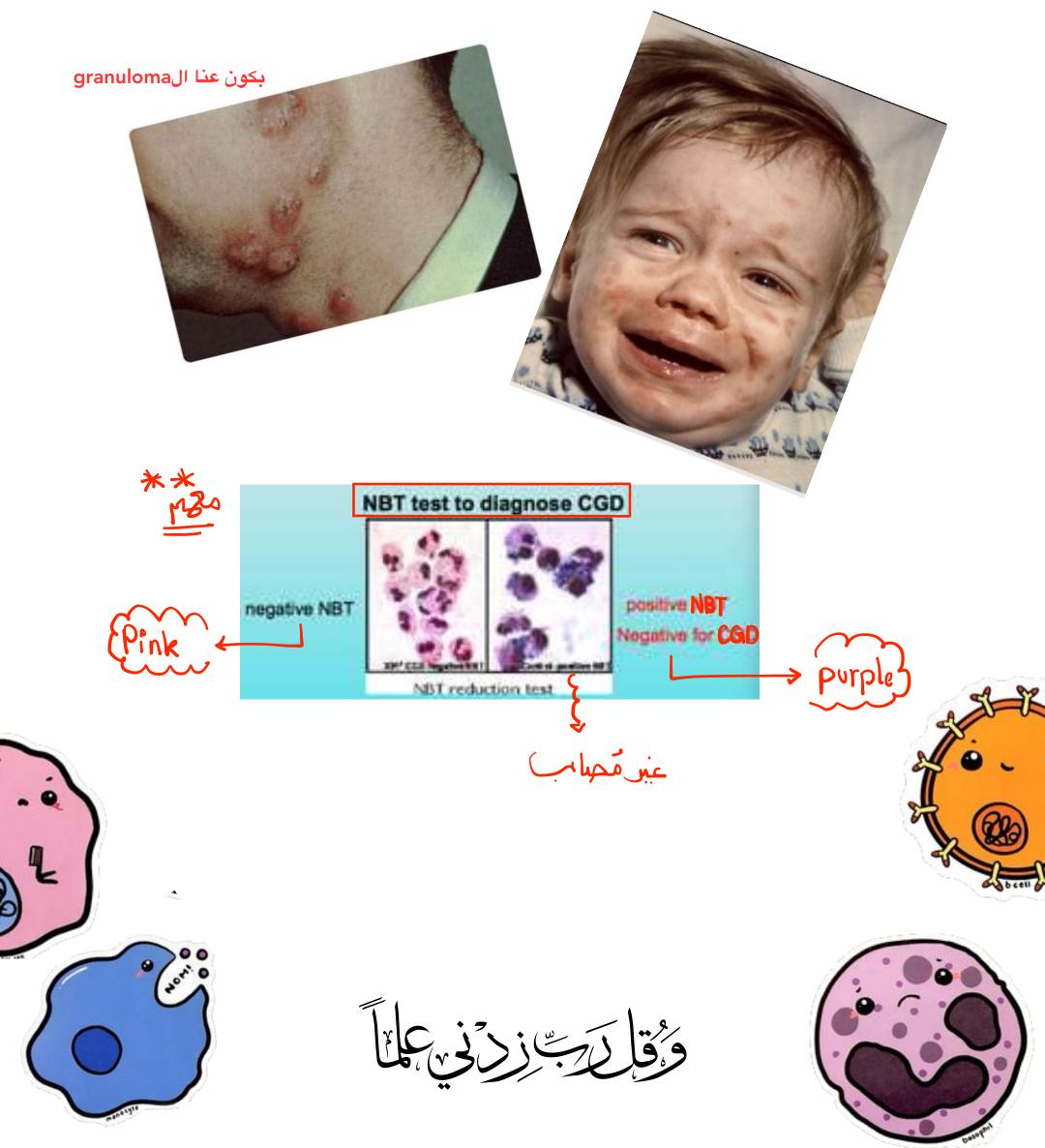

* characterized by eczema, thrombocytopenia (low platelet count), immune deficiency, and bloody diarrhea (secondary to the thrombocytopenia).

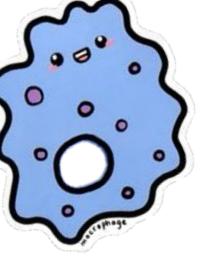
- * Symptoms in infancy
- * Recurrent, severe infections
- * Eczema

* Thrombocytopenia (petechiae)

<u>* Treatment</u>: manage bleeding/infections, BMT bone marrow transplantion

4. Phagocyte disorders

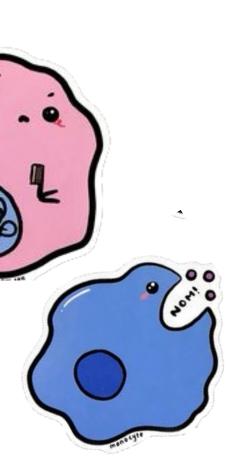

* Clinical features: Affected individuals are prone to infections with low-grade bacteria such as Staphylococcus aureus and gram-negative enteric bacteria.


without killing bacteria just ingest it and keep it inside a prodect mass around it.

Chronic Granulamatous Disease (CGD)

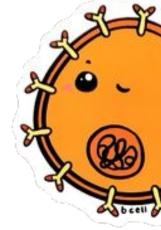
- * Immunology:

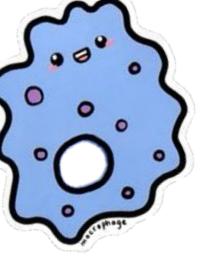
- سوال متوقع * Defective NADPH oxidase * 75% ۲ استا ۲ % ۲5% * 75% X-linked recessive, 25% autosomal recessive
 - * Manifestation:
 - * Severe, recurrent staph aureus infections of lymph nodes, skin, and lung
 - * Dx: Nitroblue tetrazolium (NBT) test (معهم)
 - * Treatment: antimicrobial prophylaxis, IFN-gamma, BMT

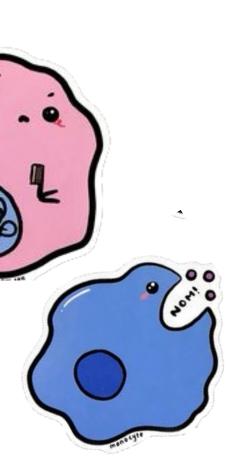

5. Complement Disorders

* Deficiency of early complement components (C1, C4, C2) results in a symptom complex resembling collagen vascular disorders (e.g., systemic lupus erythematosus (SLE)] and increased susceptibility to pyogenic infections.

* C3 deficiency results in severe pyogenic infections. Several patients have also had SLE and glomerulonephritis.

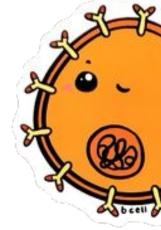

* Deficiency of late complement components (C5, C6, C7, C8) results in systemic Neisseria infections such as meningococcal sepsis and meningitis, and disseminated gonococcal infections.


مىقىقى سۇل مە


Diagnosis of immunodeficiency disease

laboratory investigation:

- CBC: increase PMNL suspect phagocyte deficiency
- Culture: to know the organism and choose the antibiotics.
- ESR and CRP: inflammation markers for follow up.


Specific tests:

- 1. B-cells:
- Total Ig
- Selected IgA and IgG
- Antibodies for pervious vaccination
- 2. T cells:
- Lymphocyte count.
- Delayed hypersensitivity reaction
- T cells and macrophage function test.
- 3. Phagocyte:
- Neutrophil count
- NBT test for screening.
- Macrophage function test
- 4. Complement: Total and specific complement count.

