

ILOS

1. To describe the internal features of each chamber of the heart.
2. To describe the fibrous skeleton of heart.
3. To identify papillary muscles and describe their locations and importance.
4. To describe the atrioventricular, semilunar (pulmonary and aortic) valves, their position, functional importance, surface marking and ideal sites for their auscultation.
5. To describe different parts of the conductive system of the heart.

Interior of the right ventricle

Thickness of the wall of the Left Ventricle $>$ Right Ventricl

B- Has smooth (outflow) part:

مٌollor

- Infundibulum of pulmonary trunk; funnel shaped part of right ventricle toward the pulmonary orifice, separated from inflow part by supraventricular crest.

C-Rough (inflow) part: shows (3 features)

1-Trabeculae carneae:

Muscular ridges that freely intercross. to form a mestwork asimlum

2-Papillary muscles: three in number

Anterior, posterior \& septal papillary muscles
Shape: conical has:

- Apex: gives chordae tendinae that attached to the margins \& ventricular surface of cusps of the tricuspid valve.

Function: they prevent prolapse of cusps (eversion to the atrium), holding them in a closed position.
\longrightarrow during ventricular systole, blood flows toward the pulmonary trunk whitout requrg gitation toward the right atrium by closure of the Tricuspid value, so chordae tendine hald the cusp in closed position \& prevent eversion of the blood to the atrium due to high blood presswe in the Tricuspid valve, so chordae tendine had
right veltricle during ventricular systole
3-Moderator band:

- It is a trabecula from the interventricular septum to the base of anterior papillary muscle.
- Function: Transmits the right bundle branch.

Interior of the left Ventricle

Cross section:

- Has circular cavity.
- Its wall: three times thickness of the wall of the right ventricle.

A- Has 2 openings:
Mitral \& Aortic.

B-Smooth (outflow) part:

Aortic vestibule, below the aortic opening.

C- Rough (inflow) part, shows:

1-Trabeculae carneae.

2- Papillary muscles: two in number,
Anterior \& posterior papillary muscles. no Splal fopllay Musce
Shape: larger than that of the right ventricle, chordae tendinae are attached to margins \& ventricular surface of cusps of the mitral valve.

3- Has no moderator band.

Interventricular septum

- The right ventricle is anterior \& to the right of the septum.
- The left ventricle is posterior \& to the left of the septum.
- The septum is convex towards the right ventricle.
- Consists of 2 parts (Lower muscular \& upper membranous parts). two thirds

Muscular \& Lower two thirds
Part

Fibrous skeleton of the heart

Definition: A rigid framework of dense regular connective tissue located between the atria and the ventricles.

Components:

Four fibrous rings. 1-tricusped ring.

2-mitral ring. 3or Bicuspid ring
aortic ring. 4-pulmonary ring.

- Right and left fibrous trigones. (woo)
- Membranous parts of the interatrial, interventricular septum.

Functions:

- Maintains valve orifices open.
- Provides attachment for valve cusps\& myocardial fibers
- Acts as an electrical insulator between the atria and
 humen dimal atrioventricular bundle. (speciaired cartiac muscle bunde \& one partof the conducting ysten) Imperdunn
$\overline{\text { agroup of fibers }}$

(a)

Orifices at the right side of the heart

1-Right atrio-ventricular (inlet) orifice: \rightarrow Prom Right Arium to Rigtt Volticice

Tricuspid orifices:

- Guarded by Tricuspid Valve.
- Surrounded by a fibrous ring, which gives attachment to $\mathbf{3}$ cusps (anterior, posterior \& septal) of tricuspid valve.
* Each cusp; is a reduplication of of endocardium
squamous epithelium
like the endothelium of
the blood vessels
Each cusp; is triangular in shape, has:
- Two surfaces; smooth atrial \& rough ventricular.
- Base; attached to fibrous ring.
- Adinexd damener .
*Also Chordae tendinae attached to ventricular surfac.

$\underline{\text { 2-Outlet orifice of the right ventricle: Pulmonary }}$

 orifice: \rightarrow bedwen Rijit kultrice \& Fummonay Truk- Guarded by Semilunar (valve) $\xrightarrow{\text { ani }}$ Pumponay Valve
- Surrounded by a fibrous ring, which gives attachment to 3 semilunar cusps (anterior, right \&left) of pulmonary valve.

Each cusp: formed by folds (reduplication) of endocardium.

Each cusp: semilunar \&has:

- Concave upper surface (open mouths) \& convex lower (ventricular) surface. \rightarrow touard the right veatricle
- Upper margin (free); shows thickened nodule in the middle \& thin lunule on the sides.
- Lower margins \& sides; are attached to the arterial wall.
to prevent prolapse into the right ventricle

\triangle Free part \longrightarrow Nodule + Lunle

Pulmonary valve:

- No chordae tendinae or papillary muscles are associated with these valve cusps.
- The attachments of the sides of the cusps to the arterial wall prevent the cusps from prolapsing into the ventricle.
- At the root of the pulmonary trunk are three dilatations called the sinuses.
- During the ventricular systole, the cusps of the valve are pressed against the wall of the pulmonary trunk by the out-rushing blood.
- During diastole, blood flows back toward the heart and enters the sinuses, the valve cusps fill and come into apposition in the center of the lumen, and close the pulmonary orifice.

Orifices of the left ventricle

1-Left atrio-ventricular (inlet):

Mitral orifice \rightarrow betwen Left Atrium \&LLeft Ventricle

- Guarded by the Mitral Valve. or Bicuspid Valve
- Surrounded by a fibrous ring, which gives attachment to 2 cusps (anterior \&posterior) of mitral valve.

The same description of the tricuspid cusps.

2- Outlet orifice; Aortic orifice. \longrightarrow betwen Aorta \& Left Ventricte

- Guarded by the semilunar valve.
- Surrounded by a fibrous ring, which gives attachment to 3 semilunar cusps (posterior, right \& left) of the aortic valve.

Each cusp: formed by folds of endocardium.

Each cusp: semilunar \&has:
The same description of the pulmonary cusps.

- Aortic Sinuses: slight dilatation above each cusp.

Surface anatomy of the valves of the heart

" 3دردِ بالأكدانز "

Pulmonary valve: Left $3^{\text {rd }}$ costal cartilage, close to the sternal margin.

Aortic valve: level of Left third intercostal space, behind the left $1 / 2$ of sternum.

Mitral valve: Left fourth costal cartilage close to the sternal margin.

Tricuspid valve: level of fourth intercostal space, behind the right half of the sternum.

From Drake R et al. Gray's atlas of anatomy. 2nd ed. Philadelphia, PA: Churchill Livingstone/Elsevier, 2015,

- There are two normal heart sounds, often described as a lub and a dub that occur in sequence with each heartbeat.
- First heart sound $\left(\mathrm{S}_{1}\right)$ produced by the closing of the atrioventricular valves.
- Second heart sound $\left(\mathrm{S}_{2}\right)$, produced by the closing of the semilunar valves. (Imete + Pimanayy Vance)
- It is important for a physician to know where to place the stethoscope on the chest wall to be able to hear sounds produced at each valve with the minimum of

or closure of the valve is insufficient which causes regurgilation of the blood

From Drake R et al. Gray's atlas of anatomy. 2nd ed. Philadelphia, PA: Churchill Livingstone/Esevier, 2015.

- Pulmonary valve area is best heard over the left second intercostal space, near the sternal border. or Medial end of the Intercostal Space
- Aortic valve area is best heard over the right second intercostal space, near the sternal border, or Mefial end of the Inererostal
- Mitral valve area is best heard over the apex of the heart. \longrightarrow Nine cm to the left from the Median Line in $5^{\text {th }}$ Intercostal Space
- Tricuspid valve area is at fourth $\&$ fifth intercostal space, near the left sternal border.

From Drake Ret al. Gray's atas of anatomy. 2nd ed. Philadelphia, PA: Churchill Livingstone/Elsevier, 2015.

Conductive System of the Heart

- The normal heart contracts rhythmically at about 70 to 90 beats/ minute in the resting adult.
- The rhythmic contractile process originates spontaneously in the conducting system and the impulse travels to different regions of the heart, so wot the the atria contract first and together, to be followed later by the contractions of both ventricles together.
- The slight delay in the passage of the impulse from the atria to the ventricles allows time for the atria to empty their blood into the ventricles before the ventricles contract.

Anterior view of frontal section

The specialized cardiac muscle fibers that form the conductive system of the heart, represented in:

- Sinuatrial node (SAN) \rightarrow Pacemake of the teart which withole the electrical inpulse
- Atrioventricular node (AVN) \rightarrow Not a pacemaker
- Atrioventricular bundle and its right and left terminal branches.
- Subendocardial plexus of Purkinje fibers.

Anterior view of frontal section

Sinoatrial node (SAN)

- It is the pacemaker of the heart, initiates the impulse of contraction.
- The sinoatrial node is an elliptical structure, 10-20 mm long.
- Site: is located in the wall of the right atrium in the upper part of the sulcus terminalis, subepicardially. just to the right of the opening of the superior vena cava
- The node spontaneously gives origin to rhythmic electrical impulses that spread in all directions through the cardiac muscle of the atria and cause the muscles to contract.

Atrioventricular Node (AVN)
) inda Pacernater

\downarrow in the Ryint Arime

- Site: It is located within the triangle of Koch (at its apex)- above the attachment of the septal cusp of the tricuspid valve.
© Triangle of Koch is a region located at the right Randervel $a t r i u m$ defined by the following landmarks: the Trayge of fod coronary sinus ostium, tendon of Todaro (tT), and the septal leaflet of the tricuspid valve (TV).
- The atrioventricular node is stimulated by the excitation waves as it pass through the atrial myocardium.
- From it the cardiac impulse is conducted to the ventricles by the atrioventricular bundle.

Atrioventricular Bundle: \rightarrow orymat fon tud Arovertruaber Bude

- The atrioventricular bundle (bundle of His) it is the only bundle of cardiac muscle that connects the myocardium of the atria and the myocardium of the ventricles.
- So it is thus the only route along which the cardiac impulse can travel from the atria to the ventricles.
- Course: The bundle descends through the fibrous skeleton of the heart, then descends behind the septal cusp of the tricuspid valve to reach the membranous part of the ventricular septum.
\downarrow or at junction between Muscular \& Membranous part of Interventricular Septum
- End: At the upper border of the muscular part of the ventricular septum it divides into two branches, one for each ventricle, Right \& left bundle branches. \rightarrow buddel Por each vertricle

Quiz

A 57-year-old patient has a heart murmur resulting from the inability to maintain constant tension on the cusps of the atrioventricular (AV) valve. Which of the following structures is most likely damaged?
(A) Crista terminalis
(B) Moderator band.
(C) Chordae tendineae \rightarrow it is resonsibee to clase He cusps sufficicenty
(D) Pectinate muscle.

Which of the following sequences correctly represents the conduction of an impulse through the heart?
A) SA node, AV node, AV bundle, bundle branches
B) SA node, AV bundle, AV node, bundle branches
C) AV node, SA node, AV bundle, bundle branches
D) SA node, bundle branches, AV node, AV bundle
E) AV node, AV bundle, SA node, bundle branches

