Blood Supply of Brain

Dr Ashraf Sadek PhD, MD, MRCPCH
Assistant Professor of anatomy and embryology

Blood Supply of Brain

Arterial

Two arterial systems
1- Carotid system
2- Vertebro-basilar system

- Both anastomose at the

CIRCLE OF WILLIS.

Internal Carotid A (ICA)

- Begins at bifurcation of CCA in the neck (at upper border of thyroid cartilage) [disc between C3 and C4].
- Course:
it is divided into 4 parts

Internal Carotid A. (ICA)

- 1st part = Cervical Part
- 2nd part = Petrous Part passes through carotid canal of skull to enter cranial cavity via foramen lacerum.
- 3rd part = Cavernous Part runs in cavernous sinus
- 4th part = Cerebral Part emerges through roof of cavernous sinus

Branches of cerebral part of ICA

Vertebral artery

- Begining

branch of first part of
Subclavian Artery.

- Ends
at lower border of pons by joining the other vertebral to form basilar artery.

Branches of $4^{\text {th }}$ part of vertebral artery

1. Anterior spinal (Rt.+ Lt. ... single spinal artery).
2. Posterior spinal aa.
3. PICA.
4. Medullary branches
5. Meningeal.

Basilar artery

- Begins by union of Rt \& Lt. vertebral arteries at lower border of pons.
- Ends
by giving its two terminal brs.
Rt \& Lt PCA " ${ }^{\prime \prime}$. at the upper border of pons.

Branches of Basilar Artery

Terminal branches
1.Pos. cerebral A.

Two cerebellar
2. Superior cerebellar A.
3. Anterior inferior cerebellar
(AICA)
4. Pontine branches
5. Labyrinthine A.

Circle of Willis

"Circulus arteriosus"

- Definition:

A large arterial anastomotic circle between the carotid and vertebrobasilar systems.

- Site:
at the base of the brain. In the interpeduncular cistern.

Circle of Willis

Anterior cerebral artery

ACA

It runs towards the longitudinal fissure where it communicates with the other anterior cerebral artery through the anterior communicating artery. It runs backwards over corpus callosum.It ends near the Parieto-occipital Sulcus (P.O.S.) by anastomosing with the posterior cerebral artery. It has Cortical and Central branches.

Distribution of anterior cerebral A.

(ACA)

- Medial surface (All except occipital lobe supplied by PCA).
- $1-2 \mathrm{~cm}$ of superolateral surface of frontal \& parietal lobes.

Inferior surface

- Medial part of orbital surface

Applied anatomy: the ACA supplies the motor \& sensory areas of the contralateral lower limb.

Middle cerebral artery

 MCA- Origin:

It is the larger terminal branch of internal carotid artery

- Course:

It runs in the lateral Sulcus crossing the insula to reach the superolateral surface

Distribution

- Lateral surface
(a large area except occipital lobe + a strip along superior border + a strip along inf. border).
- Inferior surface (lateral part of orbital surface + temporal pole)

Inferior surface
Applied anatomy: the MCA supplies the motor \& sensory areas of the contralateral upper limb ,trunk and face + speech (in dominant hemisphere) \& auditory areas + frontal eye field. Its thrombosis is very serious \& if occurs on the dominant side aphasia occurs.

Posterior cerebral artery

 PCA- Origin:

The terminal branch of basilar artery.

- Course:

It receives the posterior communicating artery and turns around the cerebral peduncle to reach Tentorial surface of brain, where it breaks into cortical branches.

Distribution

- Lateral surface (occipital lobe+ strip along lower border of hemisphere).
- Medial surface (occipital lobe)
- Inferior surface (tentorial part except temporal pole)

Applied anatomy: the PCA supplies the visual areas of the contralateral $1 / 2$ of both visual fields. Its occlusion leads to homonymous hemianopia but there is macular sparing because the branches
supplying the macular region have strong anastomosis with the MCA

Left

Venous drainage of the Brain

- Superficial (external) veins:

Drain the cortical surfaces of the cerebral hemisphere

- Deep (internal) veins:

Drain the interior of the cerebral hemisphere.

- Veins emerge from the brain to the subarachnoid space then pierce the arachnoid and meningeal layer of dura to drain into cranial venous sinuses.

Superficial veins

3 Superficial veins

1. Superior Cerebral Veins
2. Superficial middle Cerebral Veins
3. inferior Cerebral Veins

Deep Veins

- Thalamostriate vein + choroidal vein....INTERNAL CEREBRAL VEIN
- The (Rt. \& Lt.) internal cerebral veins uniteGREAT CEREBRAL V.
- Great cerebral vein (receives basal V.) + ISS STRAIGHT SINUS.

VENTRICULAR SYSTEM

Within the brain is a
communicating system of cavities which are lined by ependyma and
 filled with cerebrospinal fluid (CSF).

VENTRICULAR SYSTEM

The cavities include :

1. the two lateral ventricles(cavity of telencephalon)
2. the third ventricle (cavity of diencephalon)
3. the fourth ventricle (cavity of rhombencephalon)

(a) Lateral view

Anterior view

Lateral Ventricle

Definition:

- It is the largest brain ventricle.
- The right and left lateral ventricles are the cavities of the cerebral hemispheres
 (telencephalon).
- It is connected with the 3 rd ventricle by the interventricular foramen (of Monro)

Lateral Ventricle

Parts:

Each lateral ventricle is a roughly C-shaped, having

1. a body,
2. an anterior horn that projects into the frontal lobe,
3. a posterior horn that projects into occipital lobe
4. and an inferior horn that extends into temporal lobe

Body of the lateral ventricle

Extends from the interventricular foramen till the posterior end of the thalamus .
Boundaries: it has a roof, a floor, and a medial wall.
$>$ The roof is formed by the corpus callosum.
$>$ The floor is formed by:

1. The body of the caudate nucleus

2 The thalamus .
> The medial wall is formed anteriorly by the septum pellucidum .

- NB:

The choroid plexus of the lateral ventricle present in its body and inferior horn.

choroid plexuses of the ventricles

The pia mater + blood
vessels + ependyma form the choroid plexuses of the ventricles

Ependyma: simple cuboidal epithelium which lines the ventricles
The choroid plexuses are formed by: invagination of the vascular pia into the lumen of
 the ventricles,

Circulation:

FROM THE Lateral ventricles

.... by interventricular foramen to the third ventricle by.... aqueduct of Sylvius to the fourth ventricle through the median foramen (of Magendie) \& the two lateral foramina (of Luschka) to the ...subarachnoid space. From here it flows in subarachnoid space around brain or around
 spinal cord.

(a) Lateral view

42

Absorption:
 Mostly through arachnoid villi and granulations into the dural venous sinuses especially the superior sagittal sinus.

- The space between arachnoid and pia is called subarachnoid space.
The subarachnoid space contains CSF and the arteries supplying the brain.
- The outer surface of the arachnoid forms at certain sites the arachnoid villi and granulations through which CSF passes to the venous sinuses.

Predict what happen if the amount of CSF increased than normal?

Hydrocephalus: An increase in the volume of CSF within the skull due to:
\uparrow formation or \downarrow absorption or block in circulation of CSF.
This excess fluid compresses the brain.

MCQ

The following structure is related to the lateral ventricle :
A-Thalamus
B- cerebellum
C-Pineal gland.
D-Optic chiasma
E-Posterior perforated substance.

Thank you

