

Blood Supply of Brain

Dr Ashraf Sadek PhD, MD, MRCPCH

Assistant Professor of anatomy and embryology

Blood Supply of Brain

Arterial

Two arterial systems

1- Carotid system

2- Vertebro-basilar system

 Both anastomose at the CIRCLE OF WILLIS.

Internal Carotid A (ICA)

• Begins at bifurcation of CCA in the neck (at upper border of thyroid cartilage) [disc between C3 and C4].

• <u>Course</u>: it is divided into 4 parts

Internal Carotid A. (ICA)

1st part = Cervical Part

 2nd part = Petrous Part passes through carotid canal of skull to enter cranial cavity via foramen lacerum.

 3rd part = Cavernous Part runs in cavernous sinus

 4th part = Cerebral Part emerges through roof of cavernous sinus

 End: opposite anterior perforated substance by dividing into anterior and middle cerebral arteries (ACA & MCA).

Branches of cerebral part of ICA

Vertebral artery

- Begining branch of first part of Subclavian Artery.
- Ends
 at lower border of
 pons by joining the
 other vertebral to form
 basilar artery.

Branches of 4th part of vertebral artery

- 1. Anterior spinal (Rt.+ Lt. ... single spinal artery).
- 2. Posterior spinal aa.
- 3. PICA.
- 4. Medullary branches
- 5. Meningeal.

Basilar artery

Begins
 by union of
 Rt & Lt. vertebral
 arteries at lower
 border of pons.

Ends by giving its two terminal brs. Rt & Lt PCA ". at the upper border of pons.

Branches of Basilar Artery

Terminal branches

1.Pos. cerebral A.

Two cerebellar

- 2. Superior cerebellar A.
- 3. Anterior inferior cerebellar (AICA)
- 4. Pontine branches
- 5. Labyrinthine A.

Circle of Willis "Circulus arteriosus"

Definition:

A large arterial anastomotic circle between the carotid and vertebrobasilar systems.

Site:

at the base of the brain. In the interpeduncular cistern.

Anterior cerebral artery

ACA

It runs towards the longitudinal fissure where it communicates with the other anterior cerebral artery through the anterior communicating artery. It runs backwards over corpus callosum. It ends near the Parieto-occipital Sulcus (P.O.S.) by anastomosing with the posterior cerebral artery. It has **Cortical** and **Central** branches.

Distribution of anterior cerebral A.

(ACA)

- Medial surface (All except occipital lobe supplied by PCA).
- 1-2 cm of superolateral surface of frontal & parietal lobes.

Lateral surface

Inferior surface

 Medial part of orbital surface

Applied anatomy: the ACA supplies the motor & sensory areas of the contralateral lower limb.

Inferior surface

Middle cerebral artery

MCA

Origin:

It is the larger terminal branch of internal carotid artery

Course:

It runs in the lateral Sulcus crossing the insula to reach the superolateral surface

Distribution

Lateral surface

 (a large area except
 occipital lobe + a strip
 along superior border + a
 strip along inf. border).

Inferior surface

 (lateral part of orbital surface + temporal pole)

Applied anatomy: the MCA supplies the motor & sensory areas of the contralateral upper limb, trunk and face + speech (in dominant hemisphere) & auditory areas + frontal eye field. Its thrombosis is very serious & if occurs on the dominant side aphasia occurs.

Posterior cerebral artery PCA

• Origin:

The terminal branch of basilar artery.

Course:

It receives the posterior communicating artery and turns around the cerebral peduncle to reach Tentorial surface of brain, where it breaks into cortical branches.

Distribution

 Lateral surface (occipital lobe+ strip along lower border of hemisphere).

Medial surface (occipital lobe)

 Inferior surface (tentorial part except temporal pole)

Applied anatomy: the PCA supplies the visual areas of the contralateral ½ of both visual fields. Its occlusion leads to homonymous hemianopia but there is *macular sparing* because the branches supplying the macular region have strong anastomosis with the MCA

Venous drainage of the Brain

- Superficial (external) veins:
 - Drain the cortical surfaces of the cerebral hemisphere
- Deep (internal) veins:
 - Drain the interior of the cerebral hemisphere.
- Veins emerge from the brain to the subarachnoid space then pierce the arachnoid and meningeal layer of dura to drain into cranial venous sinuses.

Superficial veins

3 Superficial veins

- 1. Superior Cerebral Veins
- 2. Superficial middle Cerebral Veins
- 3. inferior Cerebral Veins

Deep Veins

- Thalamostriate vein + choroidal vein....INTERNAL CEREBRAL VEIN
- The (Rt. & Lt.) internal cerebral veins uniteGREAT CEREBRAL V.
- Great cerebral vein (receives basal V.) + ISS...... STRAIGHT SINUS.

VENTRICULAR SYSTEM

VENTRICULAR SYSTEM

The cavities include:

- 1. the two lateral ventricles (cavity of telencephalon)
- 2. the third ventricle (cavity of diencephalon)
- 3. the fourth ventricle (cavity of rhombencephalon)

Anterior view

Figure 16.2d Ventricles of the Brain Lateral ventricles Interventricular foramen Thirdventricle Inferior horn oflateral ventricle Septum Aqueduct of pellucidum midbrain Fourth ventricle Central canal

d Diagrammatic coronal section showing the interconnections between the ventricles

© 2012 Pearson Education, Inc.

Lateral Ventricle

Definition:

- It is the largest brain ventricle.
- The right and left lateral ventricles are the <u>cavities of</u> <u>the cerebral hemispheres</u> (telencephalon).
- It is connected with the 3rd ventricle by the interventricular foramen (of Monro)

Lateral Ventricle

Parts:

Each lateral ventricle is a roughly C-shaped, having

- 1. a **body**,
- 2. an anterior horn that projects into the frontal lobe,
- 3. a **posterior horn** that projects into occipital lobe
- 4. and an inferior horn that extends into temporal lobe

Body of the lateral ventricle

Extends from the interventricular foramen till the posterior end of the thalamus.

Boundaries: it has a roof, a floor, and a medial wall.

- > The roof is formed by the corpus callosum.
- > The floor is formed by:
 - 1. The body of the caudate nucleus
 - 2 The thalamus.
- The medial wall is formed anteriorly by the septum pellucidum.

- NB:
The choroid plexus of the lateral ventricle present in its body and inferior horn.

choroid plexuses of the ventricles

The pia mater + blood vessels + ependyma form the choroid plexuses of the ventricles

Ependyma: simple cuboidal epithelium which lines the ventricles

The choroid plexuses are formed by: invagination of the vascular pia into the lumen of the ventricles,

Circulation:

FROM THE Lateral ventricles

.... by interventricular foramen to the third ventricle by.... aqueduct of Sylvius to the fourth ventricle through the median foramen (of Magendie) & the two lateral foramina (of Luschka) to the ...subarachnoid space. From here it flows in subarachnoid space around brain or around spinal cord.

(a) Lateral view

Absorption:

Mostly through arachnoid villi and granulations into the dural venous sinuses especially the superior sagittal sinus.

• The space between arachnoid and pia is called **subarachnoid space**.

The **subarachnoid space** contains CSF and the arteries supplying the brain.

• The outer surface of the arachnoid forms at certain sites the arachnoid villi and granulations through which CSF passes to the venous sinuses.

Predict what happen if the amount of CSF increased than normal?

Hydrocephalus: An increase in the volume of CSF within the skull due to:

↑ formation or ↓ absorption or block in circulation of CSF. This excess fluid compresses the brain.

The following structure is related to the lateral ventricle:

A-Thalamus

B- cerebellum

C-Pineal gland.

D-Optic chiasma

E-Posterior perforated substance.

Thank you